1
This commit is contained in:
1054
node_modules/echarts/lib/data/DataStore.js
generated
vendored
Normal file
1054
node_modules/echarts/lib/data/DataStore.js
generated
vendored
Normal file
@@ -0,0 +1,1054 @@
|
||||
|
||||
/*
|
||||
* Licensed to the Apache Software Foundation (ASF) under one
|
||||
* or more contributor license agreements. See the NOTICE file
|
||||
* distributed with this work for additional information
|
||||
* regarding copyright ownership. The ASF licenses this file
|
||||
* to you under the Apache License, Version 2.0 (the
|
||||
* "License"); you may not use this file except in compliance
|
||||
* with the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing,
|
||||
* software distributed under the License is distributed on an
|
||||
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
* KIND, either express or implied. See the License for the
|
||||
* specific language governing permissions and limitations
|
||||
* under the License.
|
||||
*/
|
||||
|
||||
|
||||
/**
|
||||
* AUTO-GENERATED FILE. DO NOT MODIFY.
|
||||
*/
|
||||
|
||||
/*
|
||||
* Licensed to the Apache Software Foundation (ASF) under one
|
||||
* or more contributor license agreements. See the NOTICE file
|
||||
* distributed with this work for additional information
|
||||
* regarding copyright ownership. The ASF licenses this file
|
||||
* to you under the Apache License, Version 2.0 (the
|
||||
* "License"); you may not use this file except in compliance
|
||||
* with the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing,
|
||||
* software distributed under the License is distributed on an
|
||||
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
* KIND, either express or implied. See the License for the
|
||||
* specific language governing permissions and limitations
|
||||
* under the License.
|
||||
*/
|
||||
import { assert, clone, createHashMap, isFunction, keys, map, reduce } from 'zrender/lib/core/util.js';
|
||||
import { parseDataValue } from './helper/dataValueHelper.js';
|
||||
import { shouldRetrieveDataByName } from './Source.js';
|
||||
var UNDEFINED = 'undefined';
|
||||
/* global Float64Array, Int32Array, Uint32Array, Uint16Array */
|
||||
// Caution: MUST not use `new CtorUint32Array(arr, 0, len)`, because the Ctor of array is
|
||||
// different from the Ctor of typed array.
|
||||
export var CtorUint32Array = typeof Uint32Array === UNDEFINED ? Array : Uint32Array;
|
||||
export var CtorUint16Array = typeof Uint16Array === UNDEFINED ? Array : Uint16Array;
|
||||
export var CtorInt32Array = typeof Int32Array === UNDEFINED ? Array : Int32Array;
|
||||
export var CtorFloat64Array = typeof Float64Array === UNDEFINED ? Array : Float64Array;
|
||||
/**
|
||||
* Multi dimensional data store
|
||||
*/
|
||||
var dataCtors = {
|
||||
'float': CtorFloat64Array,
|
||||
'int': CtorInt32Array,
|
||||
// Ordinal data type can be string or int
|
||||
'ordinal': Array,
|
||||
'number': Array,
|
||||
'time': CtorFloat64Array
|
||||
};
|
||||
var defaultDimValueGetters;
|
||||
function getIndicesCtor(rawCount) {
|
||||
// The possible max value in this._indicies is always this._rawCount despite of filtering.
|
||||
return rawCount > 65535 ? CtorUint32Array : CtorUint16Array;
|
||||
}
|
||||
;
|
||||
function getInitialExtent() {
|
||||
return [Infinity, -Infinity];
|
||||
}
|
||||
;
|
||||
function cloneChunk(originalChunk) {
|
||||
var Ctor = originalChunk.constructor;
|
||||
// Only shallow clone is enough when Array.
|
||||
return Ctor === Array ? originalChunk.slice() : new Ctor(originalChunk);
|
||||
}
|
||||
function prepareStore(store, dimIdx, dimType, end, append) {
|
||||
var DataCtor = dataCtors[dimType || 'float'];
|
||||
if (append) {
|
||||
var oldStore = store[dimIdx];
|
||||
var oldLen = oldStore && oldStore.length;
|
||||
if (!(oldLen === end)) {
|
||||
var newStore = new DataCtor(end);
|
||||
// The cost of the copy is probably inconsiderable
|
||||
// within the initial chunkSize.
|
||||
for (var j = 0; j < oldLen; j++) {
|
||||
newStore[j] = oldStore[j];
|
||||
}
|
||||
store[dimIdx] = newStore;
|
||||
}
|
||||
} else {
|
||||
store[dimIdx] = new DataCtor(end);
|
||||
}
|
||||
}
|
||||
;
|
||||
/**
|
||||
* Basically, DataStore API keep immutable.
|
||||
*/
|
||||
var DataStore = /** @class */function () {
|
||||
function DataStore() {
|
||||
this._chunks = [];
|
||||
// It will not be calculated until needed.
|
||||
this._rawExtent = [];
|
||||
this._extent = [];
|
||||
this._count = 0;
|
||||
this._rawCount = 0;
|
||||
this._calcDimNameToIdx = createHashMap();
|
||||
}
|
||||
/**
|
||||
* Initialize from data
|
||||
*/
|
||||
DataStore.prototype.initData = function (provider, inputDimensions, dimValueGetter) {
|
||||
if (process.env.NODE_ENV !== 'production') {
|
||||
assert(isFunction(provider.getItem) && isFunction(provider.count), 'Invalid data provider.');
|
||||
}
|
||||
this._provider = provider;
|
||||
// Clear
|
||||
this._chunks = [];
|
||||
this._indices = null;
|
||||
this.getRawIndex = this._getRawIdxIdentity;
|
||||
var source = provider.getSource();
|
||||
var defaultGetter = this.defaultDimValueGetter = defaultDimValueGetters[source.sourceFormat];
|
||||
// Default dim value getter
|
||||
this._dimValueGetter = dimValueGetter || defaultGetter;
|
||||
// Reset raw extent.
|
||||
this._rawExtent = [];
|
||||
var willRetrieveDataByName = shouldRetrieveDataByName(source);
|
||||
this._dimensions = map(inputDimensions, function (dim) {
|
||||
if (process.env.NODE_ENV !== 'production') {
|
||||
if (willRetrieveDataByName) {
|
||||
assert(dim.property != null);
|
||||
}
|
||||
}
|
||||
return {
|
||||
// Only pick these two props. Not leak other properties like orderMeta.
|
||||
type: dim.type,
|
||||
property: dim.property
|
||||
};
|
||||
});
|
||||
this._initDataFromProvider(0, provider.count());
|
||||
};
|
||||
DataStore.prototype.getProvider = function () {
|
||||
return this._provider;
|
||||
};
|
||||
/**
|
||||
* Caution: even when a `source` instance owned by a series, the created data store
|
||||
* may still be shared by different sereis (the source hash does not use all `source`
|
||||
* props, see `sourceManager`). In this case, the `source` props that are not used in
|
||||
* hash (like `source.dimensionDefine`) probably only belongs to a certain series and
|
||||
* thus should not be fetch here.
|
||||
*/
|
||||
DataStore.prototype.getSource = function () {
|
||||
return this._provider.getSource();
|
||||
};
|
||||
/**
|
||||
* @caution Only used in dataStack.
|
||||
*/
|
||||
DataStore.prototype.ensureCalculationDimension = function (dimName, type) {
|
||||
var calcDimNameToIdx = this._calcDimNameToIdx;
|
||||
var dimensions = this._dimensions;
|
||||
var calcDimIdx = calcDimNameToIdx.get(dimName);
|
||||
if (calcDimIdx != null) {
|
||||
if (dimensions[calcDimIdx].type === type) {
|
||||
return calcDimIdx;
|
||||
}
|
||||
} else {
|
||||
calcDimIdx = dimensions.length;
|
||||
}
|
||||
dimensions[calcDimIdx] = {
|
||||
type: type
|
||||
};
|
||||
calcDimNameToIdx.set(dimName, calcDimIdx);
|
||||
this._chunks[calcDimIdx] = new dataCtors[type || 'float'](this._rawCount);
|
||||
this._rawExtent[calcDimIdx] = getInitialExtent();
|
||||
return calcDimIdx;
|
||||
};
|
||||
DataStore.prototype.collectOrdinalMeta = function (dimIdx, ordinalMeta) {
|
||||
var chunk = this._chunks[dimIdx];
|
||||
var dim = this._dimensions[dimIdx];
|
||||
var rawExtents = this._rawExtent;
|
||||
var offset = dim.ordinalOffset || 0;
|
||||
var len = chunk.length;
|
||||
if (offset === 0) {
|
||||
// We need to reset the rawExtent if collect is from start.
|
||||
// Because this dimension may be guessed as number and calcuating a wrong extent.
|
||||
rawExtents[dimIdx] = getInitialExtent();
|
||||
}
|
||||
var dimRawExtent = rawExtents[dimIdx];
|
||||
// Parse from previous data offset. len may be changed after appendData
|
||||
for (var i = offset; i < len; i++) {
|
||||
var val = chunk[i] = ordinalMeta.parseAndCollect(chunk[i]);
|
||||
if (!isNaN(val)) {
|
||||
dimRawExtent[0] = Math.min(val, dimRawExtent[0]);
|
||||
dimRawExtent[1] = Math.max(val, dimRawExtent[1]);
|
||||
}
|
||||
}
|
||||
dim.ordinalMeta = ordinalMeta;
|
||||
dim.ordinalOffset = len;
|
||||
dim.type = 'ordinal'; // Force to be ordinal
|
||||
};
|
||||
DataStore.prototype.getOrdinalMeta = function (dimIdx) {
|
||||
var dimInfo = this._dimensions[dimIdx];
|
||||
var ordinalMeta = dimInfo.ordinalMeta;
|
||||
return ordinalMeta;
|
||||
};
|
||||
DataStore.prototype.getDimensionProperty = function (dimIndex) {
|
||||
var item = this._dimensions[dimIndex];
|
||||
return item && item.property;
|
||||
};
|
||||
/**
|
||||
* Caution: Can be only called on raw data (before `this._indices` created).
|
||||
*/
|
||||
DataStore.prototype.appendData = function (data) {
|
||||
if (process.env.NODE_ENV !== 'production') {
|
||||
assert(!this._indices, 'appendData can only be called on raw data.');
|
||||
}
|
||||
var provider = this._provider;
|
||||
var start = this.count();
|
||||
provider.appendData(data);
|
||||
var end = provider.count();
|
||||
if (!provider.persistent) {
|
||||
end += start;
|
||||
}
|
||||
if (start < end) {
|
||||
this._initDataFromProvider(start, end, true);
|
||||
}
|
||||
return [start, end];
|
||||
};
|
||||
DataStore.prototype.appendValues = function (values, minFillLen) {
|
||||
var chunks = this._chunks;
|
||||
var dimensions = this._dimensions;
|
||||
var dimLen = dimensions.length;
|
||||
var rawExtent = this._rawExtent;
|
||||
var start = this.count();
|
||||
var end = start + Math.max(values.length, minFillLen || 0);
|
||||
for (var i = 0; i < dimLen; i++) {
|
||||
var dim = dimensions[i];
|
||||
prepareStore(chunks, i, dim.type, end, true);
|
||||
}
|
||||
var emptyDataItem = [];
|
||||
for (var idx = start; idx < end; idx++) {
|
||||
var sourceIdx = idx - start;
|
||||
// Store the data by dimensions
|
||||
for (var dimIdx = 0; dimIdx < dimLen; dimIdx++) {
|
||||
var dim = dimensions[dimIdx];
|
||||
var val = defaultDimValueGetters.arrayRows.call(this, values[sourceIdx] || emptyDataItem, dim.property, sourceIdx, dimIdx);
|
||||
chunks[dimIdx][idx] = val;
|
||||
var dimRawExtent = rawExtent[dimIdx];
|
||||
val < dimRawExtent[0] && (dimRawExtent[0] = val);
|
||||
val > dimRawExtent[1] && (dimRawExtent[1] = val);
|
||||
}
|
||||
}
|
||||
this._rawCount = this._count = end;
|
||||
return {
|
||||
start: start,
|
||||
end: end
|
||||
};
|
||||
};
|
||||
DataStore.prototype._initDataFromProvider = function (start, end, append) {
|
||||
var provider = this._provider;
|
||||
var chunks = this._chunks;
|
||||
var dimensions = this._dimensions;
|
||||
var dimLen = dimensions.length;
|
||||
var rawExtent = this._rawExtent;
|
||||
var dimNames = map(dimensions, function (dim) {
|
||||
return dim.property;
|
||||
});
|
||||
for (var i = 0; i < dimLen; i++) {
|
||||
var dim = dimensions[i];
|
||||
if (!rawExtent[i]) {
|
||||
rawExtent[i] = getInitialExtent();
|
||||
}
|
||||
prepareStore(chunks, i, dim.type, end, append);
|
||||
}
|
||||
if (provider.fillStorage) {
|
||||
provider.fillStorage(start, end, chunks, rawExtent);
|
||||
} else {
|
||||
var dataItem = [];
|
||||
for (var idx = start; idx < end; idx++) {
|
||||
// NOTICE: Try not to write things into dataItem
|
||||
dataItem = provider.getItem(idx, dataItem);
|
||||
// Each data item is value
|
||||
// [1, 2]
|
||||
// 2
|
||||
// Bar chart, line chart which uses category axis
|
||||
// only gives the 'y' value. 'x' value is the indices of category
|
||||
// Use a tempValue to normalize the value to be a (x, y) value
|
||||
// Store the data by dimensions
|
||||
for (var dimIdx = 0; dimIdx < dimLen; dimIdx++) {
|
||||
var dimStorage = chunks[dimIdx];
|
||||
// PENDING NULL is empty or zero
|
||||
var val = this._dimValueGetter(dataItem, dimNames[dimIdx], idx, dimIdx);
|
||||
dimStorage[idx] = val;
|
||||
var dimRawExtent = rawExtent[dimIdx];
|
||||
val < dimRawExtent[0] && (dimRawExtent[0] = val);
|
||||
val > dimRawExtent[1] && (dimRawExtent[1] = val);
|
||||
}
|
||||
}
|
||||
}
|
||||
if (!provider.persistent && provider.clean) {
|
||||
// Clean unused data if data source is typed array.
|
||||
provider.clean();
|
||||
}
|
||||
this._rawCount = this._count = end;
|
||||
// Reset data extent
|
||||
this._extent = [];
|
||||
};
|
||||
DataStore.prototype.count = function () {
|
||||
return this._count;
|
||||
};
|
||||
/**
|
||||
* Get value. Return NaN if idx is out of range.
|
||||
*/
|
||||
DataStore.prototype.get = function (dim, idx) {
|
||||
if (!(idx >= 0 && idx < this._count)) {
|
||||
return NaN;
|
||||
}
|
||||
var dimStore = this._chunks[dim];
|
||||
return dimStore ? dimStore[this.getRawIndex(idx)] : NaN;
|
||||
};
|
||||
DataStore.prototype.getValues = function (dimensions, idx) {
|
||||
var values = [];
|
||||
var dimArr = [];
|
||||
if (idx == null) {
|
||||
idx = dimensions;
|
||||
// TODO get all from store?
|
||||
dimensions = [];
|
||||
// All dimensions
|
||||
for (var i = 0; i < this._dimensions.length; i++) {
|
||||
dimArr.push(i);
|
||||
}
|
||||
} else {
|
||||
dimArr = dimensions;
|
||||
}
|
||||
for (var i = 0, len = dimArr.length; i < len; i++) {
|
||||
values.push(this.get(dimArr[i], idx));
|
||||
}
|
||||
return values;
|
||||
};
|
||||
/**
|
||||
* @param dim concrete dim
|
||||
*/
|
||||
DataStore.prototype.getByRawIndex = function (dim, rawIdx) {
|
||||
if (!(rawIdx >= 0 && rawIdx < this._rawCount)) {
|
||||
return NaN;
|
||||
}
|
||||
var dimStore = this._chunks[dim];
|
||||
return dimStore ? dimStore[rawIdx] : NaN;
|
||||
};
|
||||
/**
|
||||
* Get sum of data in one dimension
|
||||
*/
|
||||
DataStore.prototype.getSum = function (dim) {
|
||||
var dimData = this._chunks[dim];
|
||||
var sum = 0;
|
||||
if (dimData) {
|
||||
for (var i = 0, len = this.count(); i < len; i++) {
|
||||
var value = this.get(dim, i);
|
||||
if (!isNaN(value)) {
|
||||
sum += value;
|
||||
}
|
||||
}
|
||||
}
|
||||
return sum;
|
||||
};
|
||||
/**
|
||||
* Get median of data in one dimension
|
||||
*/
|
||||
DataStore.prototype.getMedian = function (dim) {
|
||||
var dimDataArray = [];
|
||||
// map all data of one dimension
|
||||
this.each([dim], function (val) {
|
||||
if (!isNaN(val)) {
|
||||
dimDataArray.push(val);
|
||||
}
|
||||
});
|
||||
// TODO
|
||||
// Use quick select?
|
||||
var sortedDimDataArray = dimDataArray.sort(function (a, b) {
|
||||
return a - b;
|
||||
});
|
||||
var len = this.count();
|
||||
// calculate median
|
||||
return len === 0 ? 0 : len % 2 === 1 ? sortedDimDataArray[(len - 1) / 2] : (sortedDimDataArray[len / 2] + sortedDimDataArray[len / 2 - 1]) / 2;
|
||||
};
|
||||
/**
|
||||
* Retrieve the index with given raw data index.
|
||||
*/
|
||||
DataStore.prototype.indexOfRawIndex = function (rawIndex) {
|
||||
if (rawIndex >= this._rawCount || rawIndex < 0) {
|
||||
return -1;
|
||||
}
|
||||
if (!this._indices) {
|
||||
return rawIndex;
|
||||
}
|
||||
// Indices are ascending
|
||||
var indices = this._indices;
|
||||
// If rawIndex === dataIndex
|
||||
var rawDataIndex = indices[rawIndex];
|
||||
if (rawDataIndex != null && rawDataIndex < this._count && rawDataIndex === rawIndex) {
|
||||
return rawIndex;
|
||||
}
|
||||
var left = 0;
|
||||
var right = this._count - 1;
|
||||
while (left <= right) {
|
||||
var mid = (left + right) / 2 | 0;
|
||||
if (indices[mid] < rawIndex) {
|
||||
left = mid + 1;
|
||||
} else if (indices[mid] > rawIndex) {
|
||||
right = mid - 1;
|
||||
} else {
|
||||
return mid;
|
||||
}
|
||||
}
|
||||
return -1;
|
||||
};
|
||||
/**
|
||||
* Retrieve the index of nearest value.
|
||||
* @param dim
|
||||
* @param value
|
||||
* @param [maxDistance=Infinity]
|
||||
* @return If and only if multiple indices have
|
||||
* the same value, they are put to the result.
|
||||
*/
|
||||
DataStore.prototype.indicesOfNearest = function (dim, value, maxDistance) {
|
||||
var chunks = this._chunks;
|
||||
var dimData = chunks[dim];
|
||||
var nearestIndices = [];
|
||||
if (!dimData) {
|
||||
return nearestIndices;
|
||||
}
|
||||
if (maxDistance == null) {
|
||||
maxDistance = Infinity;
|
||||
}
|
||||
var minDist = Infinity;
|
||||
var minDiff = -1;
|
||||
var nearestIndicesLen = 0;
|
||||
// Check the test case of `test/ut/spec/data/SeriesData.js`.
|
||||
for (var i = 0, len = this.count(); i < len; i++) {
|
||||
var dataIndex = this.getRawIndex(i);
|
||||
var diff = value - dimData[dataIndex];
|
||||
var dist = Math.abs(diff);
|
||||
if (dist <= maxDistance) {
|
||||
// When the `value` is at the middle of `this.get(dim, i)` and `this.get(dim, i+1)`,
|
||||
// we'd better not push both of them to `nearestIndices`, otherwise it is easy to
|
||||
// get more than one item in `nearestIndices` (more specifically, in `tooltip`).
|
||||
// So we choose the one that `diff >= 0` in this case.
|
||||
// But if `this.get(dim, i)` and `this.get(dim, j)` get the same value, both of them
|
||||
// should be push to `nearestIndices`.
|
||||
if (dist < minDist || dist === minDist && diff >= 0 && minDiff < 0) {
|
||||
minDist = dist;
|
||||
minDiff = diff;
|
||||
nearestIndicesLen = 0;
|
||||
}
|
||||
if (diff === minDiff) {
|
||||
nearestIndices[nearestIndicesLen++] = i;
|
||||
}
|
||||
}
|
||||
}
|
||||
nearestIndices.length = nearestIndicesLen;
|
||||
return nearestIndices;
|
||||
};
|
||||
DataStore.prototype.getIndices = function () {
|
||||
var newIndices;
|
||||
var indices = this._indices;
|
||||
if (indices) {
|
||||
var Ctor = indices.constructor;
|
||||
var thisCount = this._count;
|
||||
// `new Array(a, b, c)` is different from `new Uint32Array(a, b, c)`.
|
||||
if (Ctor === Array) {
|
||||
newIndices = new Ctor(thisCount);
|
||||
for (var i = 0; i < thisCount; i++) {
|
||||
newIndices[i] = indices[i];
|
||||
}
|
||||
} else {
|
||||
newIndices = new Ctor(indices.buffer, 0, thisCount);
|
||||
}
|
||||
} else {
|
||||
var Ctor = getIndicesCtor(this._rawCount);
|
||||
newIndices = new Ctor(this.count());
|
||||
for (var i = 0; i < newIndices.length; i++) {
|
||||
newIndices[i] = i;
|
||||
}
|
||||
}
|
||||
return newIndices;
|
||||
};
|
||||
/**
|
||||
* Data filter.
|
||||
*/
|
||||
DataStore.prototype.filter = function (dims, cb) {
|
||||
if (!this._count) {
|
||||
return this;
|
||||
}
|
||||
var newStore = this.clone();
|
||||
var count = newStore.count();
|
||||
var Ctor = getIndicesCtor(newStore._rawCount);
|
||||
var newIndices = new Ctor(count);
|
||||
var value = [];
|
||||
var dimSize = dims.length;
|
||||
var offset = 0;
|
||||
var dim0 = dims[0];
|
||||
var chunks = newStore._chunks;
|
||||
for (var i = 0; i < count; i++) {
|
||||
var keep = void 0;
|
||||
var rawIdx = newStore.getRawIndex(i);
|
||||
// Simple optimization
|
||||
if (dimSize === 0) {
|
||||
keep = cb(i);
|
||||
} else if (dimSize === 1) {
|
||||
var val = chunks[dim0][rawIdx];
|
||||
keep = cb(val, i);
|
||||
} else {
|
||||
var k = 0;
|
||||
for (; k < dimSize; k++) {
|
||||
value[k] = chunks[dims[k]][rawIdx];
|
||||
}
|
||||
value[k] = i;
|
||||
keep = cb.apply(null, value);
|
||||
}
|
||||
if (keep) {
|
||||
newIndices[offset++] = rawIdx;
|
||||
}
|
||||
}
|
||||
// Set indices after filtered.
|
||||
if (offset < count) {
|
||||
newStore._indices = newIndices;
|
||||
}
|
||||
newStore._count = offset;
|
||||
// Reset data extent
|
||||
newStore._extent = [];
|
||||
newStore._updateGetRawIdx();
|
||||
return newStore;
|
||||
};
|
||||
/**
|
||||
* Select data in range. (For optimization of filter)
|
||||
* (Manually inline code, support 5 million data filtering in data zoom.)
|
||||
*/
|
||||
DataStore.prototype.selectRange = function (range) {
|
||||
var newStore = this.clone();
|
||||
var len = newStore._count;
|
||||
if (!len) {
|
||||
return this;
|
||||
}
|
||||
var dims = keys(range);
|
||||
var dimSize = dims.length;
|
||||
if (!dimSize) {
|
||||
return this;
|
||||
}
|
||||
var originalCount = newStore.count();
|
||||
var Ctor = getIndicesCtor(newStore._rawCount);
|
||||
var newIndices = new Ctor(originalCount);
|
||||
var offset = 0;
|
||||
var dim0 = dims[0];
|
||||
var min = range[dim0][0];
|
||||
var max = range[dim0][1];
|
||||
var storeArr = newStore._chunks;
|
||||
var quickFinished = false;
|
||||
if (!newStore._indices) {
|
||||
// Extreme optimization for common case. About 2x faster in chrome.
|
||||
var idx = 0;
|
||||
if (dimSize === 1) {
|
||||
var dimStorage = storeArr[dims[0]];
|
||||
for (var i = 0; i < len; i++) {
|
||||
var val = dimStorage[i];
|
||||
// NaN will not be filtered. Consider the case, in line chart, empty
|
||||
// value indicates the line should be broken. But for the case like
|
||||
// scatter plot, a data item with empty value will not be rendered,
|
||||
// but the axis extent may be effected if some other dim of the data
|
||||
// item has value. Fortunately it is not a significant negative effect.
|
||||
if (val >= min && val <= max || isNaN(val)) {
|
||||
newIndices[offset++] = idx;
|
||||
}
|
||||
idx++;
|
||||
}
|
||||
quickFinished = true;
|
||||
} else if (dimSize === 2) {
|
||||
var dimStorage = storeArr[dims[0]];
|
||||
var dimStorage2 = storeArr[dims[1]];
|
||||
var min2 = range[dims[1]][0];
|
||||
var max2 = range[dims[1]][1];
|
||||
for (var i = 0; i < len; i++) {
|
||||
var val = dimStorage[i];
|
||||
var val2 = dimStorage2[i];
|
||||
// Do not filter NaN, see comment above.
|
||||
if ((val >= min && val <= max || isNaN(val)) && (val2 >= min2 && val2 <= max2 || isNaN(val2))) {
|
||||
newIndices[offset++] = idx;
|
||||
}
|
||||
idx++;
|
||||
}
|
||||
quickFinished = true;
|
||||
}
|
||||
}
|
||||
if (!quickFinished) {
|
||||
if (dimSize === 1) {
|
||||
for (var i = 0; i < originalCount; i++) {
|
||||
var rawIndex = newStore.getRawIndex(i);
|
||||
var val = storeArr[dims[0]][rawIndex];
|
||||
// Do not filter NaN, see comment above.
|
||||
if (val >= min && val <= max || isNaN(val)) {
|
||||
newIndices[offset++] = rawIndex;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for (var i = 0; i < originalCount; i++) {
|
||||
var keep = true;
|
||||
var rawIndex = newStore.getRawIndex(i);
|
||||
for (var k = 0; k < dimSize; k++) {
|
||||
var dimk = dims[k];
|
||||
var val = storeArr[dimk][rawIndex];
|
||||
// Do not filter NaN, see comment above.
|
||||
if (val < range[dimk][0] || val > range[dimk][1]) {
|
||||
keep = false;
|
||||
}
|
||||
}
|
||||
if (keep) {
|
||||
newIndices[offset++] = newStore.getRawIndex(i);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
// Set indices after filtered.
|
||||
if (offset < originalCount) {
|
||||
newStore._indices = newIndices;
|
||||
}
|
||||
newStore._count = offset;
|
||||
// Reset data extent
|
||||
newStore._extent = [];
|
||||
newStore._updateGetRawIdx();
|
||||
return newStore;
|
||||
};
|
||||
// /**
|
||||
// * Data mapping to a plain array
|
||||
// */
|
||||
// mapArray(dims: DimensionIndex[], cb: MapArrayCb): any[] {
|
||||
// const result: any[] = [];
|
||||
// this.each(dims, function () {
|
||||
// result.push(cb && (cb as MapArrayCb).apply(null, arguments));
|
||||
// });
|
||||
// return result;
|
||||
// }
|
||||
/**
|
||||
* Data mapping to a new List with given dimensions
|
||||
*/
|
||||
DataStore.prototype.map = function (dims, cb) {
|
||||
// TODO only clone picked chunks.
|
||||
var target = this.clone(dims);
|
||||
this._updateDims(target, dims, cb);
|
||||
return target;
|
||||
};
|
||||
/**
|
||||
* @caution Danger!! Only used in dataStack.
|
||||
*/
|
||||
DataStore.prototype.modify = function (dims, cb) {
|
||||
this._updateDims(this, dims, cb);
|
||||
};
|
||||
DataStore.prototype._updateDims = function (target, dims, cb) {
|
||||
var targetChunks = target._chunks;
|
||||
var tmpRetValue = [];
|
||||
var dimSize = dims.length;
|
||||
var dataCount = target.count();
|
||||
var values = [];
|
||||
var rawExtent = target._rawExtent;
|
||||
for (var i = 0; i < dims.length; i++) {
|
||||
rawExtent[dims[i]] = getInitialExtent();
|
||||
}
|
||||
for (var dataIndex = 0; dataIndex < dataCount; dataIndex++) {
|
||||
var rawIndex = target.getRawIndex(dataIndex);
|
||||
for (var k = 0; k < dimSize; k++) {
|
||||
values[k] = targetChunks[dims[k]][rawIndex];
|
||||
}
|
||||
values[dimSize] = dataIndex;
|
||||
var retValue = cb && cb.apply(null, values);
|
||||
if (retValue != null) {
|
||||
// a number or string (in oridinal dimension)?
|
||||
if (typeof retValue !== 'object') {
|
||||
tmpRetValue[0] = retValue;
|
||||
retValue = tmpRetValue;
|
||||
}
|
||||
for (var i = 0; i < retValue.length; i++) {
|
||||
var dim = dims[i];
|
||||
var val = retValue[i];
|
||||
var rawExtentOnDim = rawExtent[dim];
|
||||
var dimStore = targetChunks[dim];
|
||||
if (dimStore) {
|
||||
dimStore[rawIndex] = val;
|
||||
}
|
||||
if (val < rawExtentOnDim[0]) {
|
||||
rawExtentOnDim[0] = val;
|
||||
}
|
||||
if (val > rawExtentOnDim[1]) {
|
||||
rawExtentOnDim[1] = val;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
/**
|
||||
* Large data down sampling using largest-triangle-three-buckets
|
||||
* @param {string} valueDimension
|
||||
* @param {number} targetCount
|
||||
*/
|
||||
DataStore.prototype.lttbDownSample = function (valueDimension, rate) {
|
||||
var target = this.clone([valueDimension], true);
|
||||
var targetStorage = target._chunks;
|
||||
var dimStore = targetStorage[valueDimension];
|
||||
var len = this.count();
|
||||
var sampledIndex = 0;
|
||||
var frameSize = Math.floor(1 / rate);
|
||||
var currentRawIndex = this.getRawIndex(0);
|
||||
var maxArea;
|
||||
var area;
|
||||
var nextRawIndex;
|
||||
var newIndices = new (getIndicesCtor(this._rawCount))(Math.min((Math.ceil(len / frameSize) + 2) * 2, len));
|
||||
// First frame use the first data.
|
||||
newIndices[sampledIndex++] = currentRawIndex;
|
||||
for (var i = 1; i < len - 1; i += frameSize) {
|
||||
var nextFrameStart = Math.min(i + frameSize, len - 1);
|
||||
var nextFrameEnd = Math.min(i + frameSize * 2, len);
|
||||
var avgX = (nextFrameEnd + nextFrameStart) / 2;
|
||||
var avgY = 0;
|
||||
for (var idx = nextFrameStart; idx < nextFrameEnd; idx++) {
|
||||
var rawIndex = this.getRawIndex(idx);
|
||||
var y = dimStore[rawIndex];
|
||||
if (isNaN(y)) {
|
||||
continue;
|
||||
}
|
||||
avgY += y;
|
||||
}
|
||||
avgY /= nextFrameEnd - nextFrameStart;
|
||||
var frameStart = i;
|
||||
var frameEnd = Math.min(i + frameSize, len);
|
||||
var pointAX = i - 1;
|
||||
var pointAY = dimStore[currentRawIndex];
|
||||
maxArea = -1;
|
||||
nextRawIndex = frameStart;
|
||||
var firstNaNIndex = -1;
|
||||
var countNaN = 0;
|
||||
// Find a point from current frame that construct a triangle with largest area with previous selected point
|
||||
// And the average of next frame.
|
||||
for (var idx = frameStart; idx < frameEnd; idx++) {
|
||||
var rawIndex = this.getRawIndex(idx);
|
||||
var y = dimStore[rawIndex];
|
||||
if (isNaN(y)) {
|
||||
countNaN++;
|
||||
if (firstNaNIndex < 0) {
|
||||
firstNaNIndex = rawIndex;
|
||||
}
|
||||
continue;
|
||||
}
|
||||
// Calculate triangle area over three buckets
|
||||
area = Math.abs((pointAX - avgX) * (y - pointAY) - (pointAX - idx) * (avgY - pointAY));
|
||||
if (area > maxArea) {
|
||||
maxArea = area;
|
||||
nextRawIndex = rawIndex; // Next a is this b
|
||||
}
|
||||
}
|
||||
if (countNaN > 0 && countNaN < frameEnd - frameStart) {
|
||||
// Append first NaN point in every bucket.
|
||||
// It is necessary to ensure the correct order of indices.
|
||||
newIndices[sampledIndex++] = Math.min(firstNaNIndex, nextRawIndex);
|
||||
nextRawIndex = Math.max(firstNaNIndex, nextRawIndex);
|
||||
}
|
||||
newIndices[sampledIndex++] = nextRawIndex;
|
||||
currentRawIndex = nextRawIndex; // This a is the next a (chosen b)
|
||||
}
|
||||
// First frame use the last data.
|
||||
newIndices[sampledIndex++] = this.getRawIndex(len - 1);
|
||||
target._count = sampledIndex;
|
||||
target._indices = newIndices;
|
||||
target.getRawIndex = this._getRawIdx;
|
||||
return target;
|
||||
};
|
||||
/**
|
||||
* Large data down sampling using min-max
|
||||
* @param {string} valueDimension
|
||||
* @param {number} rate
|
||||
*/
|
||||
DataStore.prototype.minmaxDownSample = function (valueDimension, rate) {
|
||||
var target = this.clone([valueDimension], true);
|
||||
var targetStorage = target._chunks;
|
||||
var frameSize = Math.floor(1 / rate);
|
||||
var dimStore = targetStorage[valueDimension];
|
||||
var len = this.count();
|
||||
// Each frame results in 2 data points, one for min and one for max
|
||||
var newIndices = new (getIndicesCtor(this._rawCount))(Math.ceil(len / frameSize) * 2);
|
||||
var offset = 0;
|
||||
for (var i = 0; i < len; i += frameSize) {
|
||||
var minIndex = i;
|
||||
var minValue = dimStore[this.getRawIndex(minIndex)];
|
||||
var maxIndex = i;
|
||||
var maxValue = dimStore[this.getRawIndex(maxIndex)];
|
||||
var thisFrameSize = frameSize;
|
||||
// Handle final smaller frame
|
||||
if (i + frameSize > len) {
|
||||
thisFrameSize = len - i;
|
||||
}
|
||||
// Determine min and max within the current frame
|
||||
for (var k = 0; k < thisFrameSize; k++) {
|
||||
var rawIndex = this.getRawIndex(i + k);
|
||||
var value = dimStore[rawIndex];
|
||||
if (value < minValue) {
|
||||
minValue = value;
|
||||
minIndex = i + k;
|
||||
}
|
||||
if (value > maxValue) {
|
||||
maxValue = value;
|
||||
maxIndex = i + k;
|
||||
}
|
||||
}
|
||||
var rawMinIndex = this.getRawIndex(minIndex);
|
||||
var rawMaxIndex = this.getRawIndex(maxIndex);
|
||||
// Set the order of the min and max values, based on their ordering in the frame
|
||||
if (minIndex < maxIndex) {
|
||||
newIndices[offset++] = rawMinIndex;
|
||||
newIndices[offset++] = rawMaxIndex;
|
||||
} else {
|
||||
newIndices[offset++] = rawMaxIndex;
|
||||
newIndices[offset++] = rawMinIndex;
|
||||
}
|
||||
}
|
||||
target._count = offset;
|
||||
target._indices = newIndices;
|
||||
target._updateGetRawIdx();
|
||||
return target;
|
||||
};
|
||||
/**
|
||||
* Large data down sampling on given dimension
|
||||
* @param sampleIndex Sample index for name and id
|
||||
*/
|
||||
DataStore.prototype.downSample = function (dimension, rate, sampleValue, sampleIndex) {
|
||||
var target = this.clone([dimension], true);
|
||||
var targetStorage = target._chunks;
|
||||
var frameValues = [];
|
||||
var frameSize = Math.floor(1 / rate);
|
||||
var dimStore = targetStorage[dimension];
|
||||
var len = this.count();
|
||||
var rawExtentOnDim = target._rawExtent[dimension] = getInitialExtent();
|
||||
var newIndices = new (getIndicesCtor(this._rawCount))(Math.ceil(len / frameSize));
|
||||
var offset = 0;
|
||||
for (var i = 0; i < len; i += frameSize) {
|
||||
// Last frame
|
||||
if (frameSize > len - i) {
|
||||
frameSize = len - i;
|
||||
frameValues.length = frameSize;
|
||||
}
|
||||
for (var k = 0; k < frameSize; k++) {
|
||||
var dataIdx = this.getRawIndex(i + k);
|
||||
frameValues[k] = dimStore[dataIdx];
|
||||
}
|
||||
var value = sampleValue(frameValues);
|
||||
var sampleFrameIdx = this.getRawIndex(Math.min(i + sampleIndex(frameValues, value) || 0, len - 1));
|
||||
// Only write value on the filtered data
|
||||
dimStore[sampleFrameIdx] = value;
|
||||
if (value < rawExtentOnDim[0]) {
|
||||
rawExtentOnDim[0] = value;
|
||||
}
|
||||
if (value > rawExtentOnDim[1]) {
|
||||
rawExtentOnDim[1] = value;
|
||||
}
|
||||
newIndices[offset++] = sampleFrameIdx;
|
||||
}
|
||||
target._count = offset;
|
||||
target._indices = newIndices;
|
||||
target._updateGetRawIdx();
|
||||
return target;
|
||||
};
|
||||
/**
|
||||
* Data iteration
|
||||
* @param ctx default this
|
||||
* @example
|
||||
* list.each('x', function (x, idx) {});
|
||||
* list.each(['x', 'y'], function (x, y, idx) {});
|
||||
* list.each(function (idx) {})
|
||||
*/
|
||||
DataStore.prototype.each = function (dims, cb) {
|
||||
if (!this._count) {
|
||||
return;
|
||||
}
|
||||
var dimSize = dims.length;
|
||||
var chunks = this._chunks;
|
||||
for (var i = 0, len = this.count(); i < len; i++) {
|
||||
var rawIdx = this.getRawIndex(i);
|
||||
// Simple optimization
|
||||
switch (dimSize) {
|
||||
case 0:
|
||||
cb(i);
|
||||
break;
|
||||
case 1:
|
||||
cb(chunks[dims[0]][rawIdx], i);
|
||||
break;
|
||||
case 2:
|
||||
cb(chunks[dims[0]][rawIdx], chunks[dims[1]][rawIdx], i);
|
||||
break;
|
||||
default:
|
||||
var k = 0;
|
||||
var value = [];
|
||||
for (; k < dimSize; k++) {
|
||||
value[k] = chunks[dims[k]][rawIdx];
|
||||
}
|
||||
// Index
|
||||
value[k] = i;
|
||||
cb.apply(null, value);
|
||||
}
|
||||
}
|
||||
};
|
||||
/**
|
||||
* Get extent of data in one dimension
|
||||
*/
|
||||
DataStore.prototype.getDataExtent = function (dim) {
|
||||
// Make sure use concrete dim as cache name.
|
||||
var dimData = this._chunks[dim];
|
||||
var initialExtent = getInitialExtent();
|
||||
if (!dimData) {
|
||||
return initialExtent;
|
||||
}
|
||||
// Make more strict checkings to ensure hitting cache.
|
||||
var currEnd = this.count();
|
||||
// Consider the most cases when using data zoom, `getDataExtent`
|
||||
// happened before filtering. We cache raw extent, which is not
|
||||
// necessary to be cleared and recalculated when restore data.
|
||||
var useRaw = !this._indices;
|
||||
var dimExtent;
|
||||
if (useRaw) {
|
||||
return this._rawExtent[dim].slice();
|
||||
}
|
||||
dimExtent = this._extent[dim];
|
||||
if (dimExtent) {
|
||||
return dimExtent.slice();
|
||||
}
|
||||
dimExtent = initialExtent;
|
||||
var min = dimExtent[0];
|
||||
var max = dimExtent[1];
|
||||
for (var i = 0; i < currEnd; i++) {
|
||||
var rawIdx = this.getRawIndex(i);
|
||||
var value = dimData[rawIdx];
|
||||
value < min && (min = value);
|
||||
value > max && (max = value);
|
||||
}
|
||||
dimExtent = [min, max];
|
||||
this._extent[dim] = dimExtent;
|
||||
return dimExtent;
|
||||
};
|
||||
/**
|
||||
* Get raw data item
|
||||
*/
|
||||
DataStore.prototype.getRawDataItem = function (idx) {
|
||||
var rawIdx = this.getRawIndex(idx);
|
||||
if (!this._provider.persistent) {
|
||||
var val = [];
|
||||
var chunks = this._chunks;
|
||||
for (var i = 0; i < chunks.length; i++) {
|
||||
val.push(chunks[i][rawIdx]);
|
||||
}
|
||||
return val;
|
||||
} else {
|
||||
return this._provider.getItem(rawIdx);
|
||||
}
|
||||
};
|
||||
/**
|
||||
* Clone shallow.
|
||||
*
|
||||
* @param clonedDims Determine which dims to clone. Will share the data if not specified.
|
||||
*/
|
||||
DataStore.prototype.clone = function (clonedDims, ignoreIndices) {
|
||||
var target = new DataStore();
|
||||
var chunks = this._chunks;
|
||||
var clonedDimsMap = clonedDims && reduce(clonedDims, function (obj, dimIdx) {
|
||||
obj[dimIdx] = true;
|
||||
return obj;
|
||||
}, {});
|
||||
if (clonedDimsMap) {
|
||||
for (var i = 0; i < chunks.length; i++) {
|
||||
// Not clone if dim is not picked.
|
||||
target._chunks[i] = !clonedDimsMap[i] ? chunks[i] : cloneChunk(chunks[i]);
|
||||
}
|
||||
} else {
|
||||
target._chunks = chunks;
|
||||
}
|
||||
this._copyCommonProps(target);
|
||||
if (!ignoreIndices) {
|
||||
target._indices = this._cloneIndices();
|
||||
}
|
||||
target._updateGetRawIdx();
|
||||
return target;
|
||||
};
|
||||
DataStore.prototype._copyCommonProps = function (target) {
|
||||
target._count = this._count;
|
||||
target._rawCount = this._rawCount;
|
||||
target._provider = this._provider;
|
||||
target._dimensions = this._dimensions;
|
||||
target._extent = clone(this._extent);
|
||||
target._rawExtent = clone(this._rawExtent);
|
||||
};
|
||||
DataStore.prototype._cloneIndices = function () {
|
||||
if (this._indices) {
|
||||
var Ctor = this._indices.constructor;
|
||||
var indices = void 0;
|
||||
if (Ctor === Array) {
|
||||
var thisCount = this._indices.length;
|
||||
indices = new Ctor(thisCount);
|
||||
for (var i = 0; i < thisCount; i++) {
|
||||
indices[i] = this._indices[i];
|
||||
}
|
||||
} else {
|
||||
indices = new Ctor(this._indices);
|
||||
}
|
||||
return indices;
|
||||
}
|
||||
return null;
|
||||
};
|
||||
DataStore.prototype._getRawIdxIdentity = function (idx) {
|
||||
return idx;
|
||||
};
|
||||
DataStore.prototype._getRawIdx = function (idx) {
|
||||
if (idx < this._count && idx >= 0) {
|
||||
return this._indices[idx];
|
||||
}
|
||||
return -1;
|
||||
};
|
||||
DataStore.prototype._updateGetRawIdx = function () {
|
||||
this.getRawIndex = this._indices ? this._getRawIdx : this._getRawIdxIdentity;
|
||||
};
|
||||
DataStore.internalField = function () {
|
||||
function getDimValueSimply(dataItem, property, dataIndex, dimIndex) {
|
||||
return parseDataValue(dataItem[dimIndex], this._dimensions[dimIndex]);
|
||||
}
|
||||
defaultDimValueGetters = {
|
||||
arrayRows: getDimValueSimply,
|
||||
objectRows: function (dataItem, property, dataIndex, dimIndex) {
|
||||
return parseDataValue(dataItem[property], this._dimensions[dimIndex]);
|
||||
},
|
||||
keyedColumns: getDimValueSimply,
|
||||
original: function (dataItem, property, dataIndex, dimIndex) {
|
||||
// Performance sensitive, do not use modelUtil.getDataItemValue.
|
||||
// If dataItem is an plain object with no value field, the let `value`
|
||||
// will be assigned with the object, but it will be tread correctly
|
||||
// in the `convertValue`.
|
||||
var value = dataItem && (dataItem.value == null ? dataItem : dataItem.value);
|
||||
return parseDataValue(value instanceof Array ? value[dimIndex]
|
||||
// If value is a single number or something else not array.
|
||||
: value, this._dimensions[dimIndex]);
|
||||
},
|
||||
typedArray: function (dataItem, property, dataIndex, dimIndex) {
|
||||
return dataItem[dimIndex];
|
||||
}
|
||||
};
|
||||
}();
|
||||
return DataStore;
|
||||
}();
|
||||
export default DataStore;
|
||||
Reference in New Issue
Block a user