模型复查

This commit is contained in:
ChuXun
2026-01-30 17:33:29 +08:00
parent 727e19bee1
commit cb7f55fa21
30 changed files with 4431 additions and 0 deletions

View File

@@ -0,0 +1,180 @@
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# ==========================================
# 1. Configuration
# ==========================================
def configure_plots():
plt.rcParams['font.family'] = 'serif'
plt.rcParams['font.serif'] = ['Times New Roman']
plt.rcParams['axes.unicode_minus'] = False
plt.rcParams['font.size'] = 12
plt.rcParams['figure.dpi'] = 150
# ==========================================
# 2. Simplified Battery Model for Sensitivity
# ==========================================
class FastBatteryModel:
def __init__(self, capacity_mah=4000, temp_c=25, r_int=0.15, signal_dbm=-90):
self.q_design = capacity_mah / 1000.0
self.temp_k = temp_c + 273.15
self.r_int = r_int
self.signal = signal_dbm
# Temp correction
self.temp_factor = np.clip(np.exp(0.6 * (1 - 298.15 / self.temp_k)), 0.1, 1.2)
self.q_eff = self.q_design * self.temp_factor
def estimate_tte(self, load_power_watts):
"""
Estimate TTE using average current approximation to save time complexity.
TTE ~ Q_eff / I_avg
Where I_avg is solved from P = V_avg * I - I^2 * R
"""
# Signal power penalty (simplified exponential model)
# Baseline -90dBm. If -110dBm, power increases significantly.
sig_penalty = 0.0
if self.signal < -90:
sig_penalty = 0.5 * ((-90 - self.signal) / 20.0)**2
total_power = load_power_watts + sig_penalty
# Average Voltage approximation (3.7V nominal)
# We solve: Total_Power = (V_nom - I * R_int) * I
# R * I^2 - V_nom * I + P = 0
v_nom = 3.7
a = self.r_int
b = -v_nom
c = total_power
delta = b**2 - 4*a*c
if delta < 0:
return 0.0 # Voltage collapse, immediate shutdown
i_avg = (-b - np.sqrt(delta)) / (2*a)
# TTE in hours
tte = self.q_eff / i_avg
return tte
# ==========================================
# 3. Sensitivity Analysis Logic (OAT)
# ==========================================
def run_sensitivity_analysis():
configure_plots()
# Baseline Parameters
base_params = {
'Load Power (W)': 1.5,
'Temperature (°C)': 25.0,
'Internal R (Ω)': 0.15,
'Signal (dBm)': -90.0
}
# Perturbation range (+/- 20%)
# Note: For Signal and Temp, we use additive perturbation for physical meaning
perturbations = [-0.2, 0.2]
results = []
# 1. Calculate Baseline TTE
base_model = FastBatteryModel(
temp_c=base_params['Temperature (°C)'],
r_int=base_params['Internal R (Ω)'],
signal_dbm=base_params['Signal (dBm)']
)
base_tte = base_model.estimate_tte(base_params['Load Power (W)'])
print(f"Baseline TTE: {base_tte:.4f} hours")
# 2. Iterate parameters
for param_name, base_val in base_params.items():
row = {'Parameter': param_name}
for p in perturbations:
# Calculate new parameter value
if param_name == 'Temperature (°C)':
# For temp, +/- 20% of Celsius is weird, let's do +/- 10 degrees
new_val = base_val + (10 if p > 0 else -10)
val_label = f"{new_val}°C"
elif param_name == 'Signal (dBm)':
# For signal, +/- 20% dBm is weird, let's do +/- 20 dBm
new_val = base_val + (20 if p > 0 else -20)
val_label = f"{new_val}dBm"
else:
# Standard percentage
new_val = base_val * (1 + p)
val_label = f"{new_val:.2f}"
# Construct model with new param
# (Copy base params first)
current_params = base_params.copy()
current_params[param_name] = new_val
model = FastBatteryModel(
temp_c=current_params['Temperature (°C)'],
r_int=current_params['Internal R (Ω)'],
signal_dbm=current_params['Signal (dBm)']
)
new_tte = model.estimate_tte(current_params['Load Power (W)'])
# Calculate % change in TTE
pct_change = (new_tte - base_tte) / base_tte * 100
if p < 0:
row['Low_Change_%'] = pct_change
row['Low_Val'] = val_label
else:
row['High_Change_%'] = pct_change
row['High_Val'] = val_label
results.append(row)
df = pd.DataFrame(results)
# ==========================================
# 4. Visualization (Tornado Plot)
# ==========================================
fig, ax = plt.subplots(figsize=(10, 6))
# Create bars
y_pos = np.arange(len(df))
# High perturbation bars
rects1 = ax.barh(y_pos, df['High_Change_%'], align='center', height=0.4, color='#d62728', label='High Perturbation')
# Low perturbation bars
rects2 = ax.barh(y_pos, df['Low_Change_%'], align='center', height=0.4, color='#1f77b4', label='Low Perturbation')
# Styling
ax.set_yticks(y_pos)
ax.set_yticklabels(df['Parameter'])
ax.invert_yaxis() # Labels read top-to-bottom
ax.set_xlabel('Change in Time-to-Empty (TTE) [%]')
ax.set_title('Sensitivity Analysis: Tornado Diagram (Impact on Battery Life)', fontweight='bold')
ax.axvline(0, color='black', linewidth=0.8, linestyle='--')
ax.grid(True, axis='x', linestyle='--', alpha=0.5)
ax.legend()
# Add value labels
def autolabel(rects, is_left=False):
for rect in rects:
width = rect.get_width()
label_x = width + (1 if width > 0 else -1) * 0.5
ha = 'left' if width > 0 else 'right'
ax.text(label_x, rect.get_y() + rect.get_height()/2,
f'{width:.1f}%', ha=ha, va='center', fontsize=9)
autolabel(rects1)
autolabel(rects2)
plt.tight_layout()
plt.savefig('sensitivity_tornado.png')
plt.show()
print("\nSensitivity Analysis Complete.")
print(df[['Parameter', 'Low_Change_%', 'High_Change_%']])
if __name__ == "__main__":
run_sensitivity_analysis()