\section{Model Formulation}\label{sec:model} We develop a mechanism-driven continuous-time model for smartphone battery drain that couples (i) component-level power mapping from user/device inputs, (ii) an equivalent-circuit battery model (ECM) with polarization memory, (iii) a constant-power-load (CPL) algebraic closure for the discharge current, (iv) lumped thermal dynamics, and (v) slow health degradation (SOH). All symbols are used consistently throughout. \subsection{Total Power Decomposition $P_{\rm tot}$ (Screen/CPU/Network)}\label{sec:ptot} Let the state vector be \begin{equation} \mathbf{x}(t)=\big[z(t),\,v_p(t),\,T_b(t),\,S(t),\,w(t)\big]^\top, \end{equation} where $z$ is the state-of-charge (SOC), $v_p$ is the polarization voltage, $T_b$ is the battery temperature, $S$ is the state-of-health (SOH, capacity fraction), and $w$ is a continuous radio-tail state. The exogenous input vector is \begin{equation} \mathbf{u}(t)=\big[L(t),\,C(t),\,N(t),\,\Psi(t),\,T_a(t)\big]^\top, \end{equation} where $L$ is screen brightness, $C$ is CPU load, $N$ is network activity intensity, $\Psi$ is signal quality (larger is better), and $T_a$ is ambient temperature. We model the instantaneous total power demand as an additive decomposition \begin{equation}\label{eq:ptot_def} P_{\mathrm{tot}}(t)=P_{\mathrm{bg}}+P_{\mathrm{scr}}(L(t))+P_{\mathrm{cpu}}(C(t))+P_{\mathrm{net}}(N(t),\Psi(t),w(t)), \end{equation} where $P_{\mathrm{bg}}$ is background/baseline power. The component mappings are chosen to be explicit and mechanism-consistent: \begin{align} P_{\mathrm{scr}}(L)&=P_{\mathrm{scr},0}+k_L L^\gamma,\qquad \gamma>1,\label{eq:pscr}\\ P_{\mathrm{cpu}}(C)&=P_{\mathrm{cpu},0}+k_C C^\eta,\qquad \eta>1,\label{eq:pcpu}\\ P_{\mathrm{net}}(N,\Psi,w)&=P_{\mathrm{net},0}+k_N\frac{N}{(\Psi+\varepsilon)^\kappa}+k_{\mathrm{tail}}w, \qquad \kappa>0,\ \varepsilon>0.\label{eq:pnet} \end{align} Here $(\Psi+\varepsilon)^{-\kappa}$ captures the increased radio power required under poor signal quality, and $k_{\mathrm{tail}}w$ represents residual ``tail'' consumption after network bursts. \subsection{Continuous Radio-Tail Dynamics $w(t)$}\label{sec:tail} Instead of a discrete finite-state-machine tail model, we introduce a continuous tail state $w(t)\in[0,1]$: \begin{equation}\label{eq:w_dyn} \dot w(t)=\frac{\sigma(N(t))-w(t)}{\tau(N(t))}, \end{equation} where \begin{equation}\label{eq:sigma_tau} \sigma(N)=\min(1,N),\qquad \tau(N)= \begin{cases} \tau_\uparrow, & \sigma(N)\ge w,\\ \tau_\downarrow,& \sigma(N)< w, \end{cases} \qquad \tau_\uparrow\ll\tau_\downarrow. \end{equation} This formulation yields fast engagement of the tail state during activity increases and slow decay after activity drops, while maintaining continuity and numerical robustness. \subsection{ECM Terminal Voltage Equation}\label{sec:ecm} We adopt a first-order Thevenin ECM with an ohmic resistance and one polarization branch: \begin{equation}\label{eq:vterm} V_{\mathrm{term}}(t)=V_{\mathrm{oc}}(z(t)) - v_p(t) - I(t)\,R_0(T_b(t),S(t)), \end{equation} where $V_{\mathrm{oc}}(z)$ is the open-circuit voltage (OCV) as a function of SOC, and $R_0(T_b,S)$ is the temperature- and SOH-dependent ohmic resistance. \subsection{CPL Closure: Quadratic Current and Discriminant $\Delta$}\label{sec:cpl} Smartphone loads are well-approximated as constant-power over short time scales. We therefore impose a CPL constraint: \begin{equation}\label{eq:cpl} P_{\mathrm{tot}}(t)=V_{\mathrm{term}}(t)\,I(t) =\big(V_{\mathrm{oc}}(z)-v_p-I R_0(T_b,S)\big)I. \end{equation} This yields a quadratic equation in $I$ with discriminant \begin{equation}\label{eq:delta} \Delta(t)=\big(V_{\mathrm{oc}}(z)-v_p\big)^2-4R_0(T_b,S)P_{\mathrm{tot}}(t). \end{equation} Feasibility requires $\Delta(t)\ge 0$. When feasible, the physically consistent branch is \begin{equation}\label{eq:I_cpl} I_{\mathrm{CPL}}(t)=\frac{V_{\mathrm{oc}}(z)-v_p-\sqrt{\Delta(t)}}{2R_0(T_b,S)}. \end{equation} If $\Delta(t)<0$, the demanded power is not deliverable under the CPL assumption, indicating voltage-collapse risk. \subsection{Coupled ODEs: SOC--Polarization--Thermal--SOH--Tail}\label{sec:odes} Given $I(t)$, the coupled state dynamics are \begin{align} \dot z(t)&=-\frac{I(t)}{3600\,Q_{\mathrm{eff}}(T_b(t),S(t))},\label{eq:dz}\\ \dot v_p(t)&=\frac{I(t)}{C_1}-\frac{v_p(t)}{R_1C_1},\label{eq:dvp}\\ \dot T_b(t)&=\frac{1}{C_{\mathrm{th}}}\Big(I(t)^2R_0(T_b,S)+\frac{v_p(t)^2}{R_1}-hA\big(T_b(t)-T_a(t)\big)\Big),\label{eq:dTb}\\ \dot S(t)&=-\lambda_{\mathrm{sei}}|I(t)|^{m}\exp\!\left(-\frac{E_{\mathrm{sei}}}{R_gT_b(t)}\right),\qquad 0\le m\le 1,\label{eq:dS}\\ \dot w(t)&=\frac{\sigma(N(t))-w(t)}{\tau(N(t))}.\label{eq:dw} \end{align} Equation \eqref{eq:dTb} uses a nonnegative polarization dissipation term $v_p^2/R_1$ for energetic consistency. \subsection{Constitutive Relations: OCV, $R_0(T_b,S)$, and $Q_{\rm eff}(T_b,S)$}\label{sec:constitutive} \paragraph{OCV (modified Shepherd).} We use a modified Shepherd form: \begin{equation}\label{eq:voc_raw} V_{\mathrm{oc}}(z)=E_0-K\Big(\frac{1}{z}-1\Big)+A e^{-B(1-z)}. \end{equation} \paragraph{Ohmic resistance with Arrhenius temperature dependence and SOH correction.} \begin{equation}\label{eq:R0} R_0(T_b,S)=R_{\mathrm{ref}}\exp\!\Big[\frac{E_a}{R_g}\Big(\frac{1}{T_b}-\frac{1}{T_{\mathrm{ref}}}\Big)\Big]\big(1+\eta_R(1-S)\big). \end{equation} \paragraph{Effective capacity.} \begin{equation}\label{eq:Qeff} Q_{\mathrm{eff}}(T_b,S)=Q_{\mathrm{nom}}\,S\Big[1-\alpha_Q(T_{\mathrm{ref}}-T_b)\Big]_+, \qquad [x]_+=\max(x,0). \end{equation} \subsection{Incorporating Three Lightweight Refinements}\label{sec:refinements} To improve robustness while preserving the mechanistic structure, we incorporate three ``micro-refinements.'' \paragraph{(i) Low-SOC singularity protection in $V_{\mathrm{oc}}$.} The term $1/z$ in \eqref{eq:voc_raw} is numerically singular as $z\to 0$. We introduce an effective SOC \begin{equation}\label{eq:zeff} z_{\mathrm{eff}}(t)=\max\{z(t),z_{\min}\}, \end{equation} with a small reserve threshold $z_{\min}\in(0,1)$ (e.g., $z_{\min}=0.02$) reflecting a practical BMS ``unavailable'' low-SOC region. We then evaluate OCV using $z_{\mathrm{eff}}$: \begin{equation}\label{eq:voc} V_{\mathrm{oc}}(z)=E_0-K\Big(\frac{1}{z_{\mathrm{eff}}}-1\Big)+A e^{-B(1-z_{\mathrm{eff}})}. \end{equation} \paragraph{(ii) Nonnegative polarization heating.} Thermal generation is written as $I^2R_0+v_p^2/R_1$, which is always nonnegative and aligns with resistive dissipation in the polarization branch. This choice avoids sign ambiguities that can arise with alternative $Iv_p$ forms. \paragraph{(iii) Lightweight current saturation (throttling/PMIC limiting).} Real devices may throttle performance or limit current under low voltage or high temperature. We model this with a temperature-dependent current cap: \begin{equation}\label{eq:I_sat} I(t)=\min\big(I_{\mathrm{CPL}}(t),\,I_{\max}(T_b(t))\big), \end{equation} where a simple continuous form is \begin{equation}\label{eq:Imax} I_{\max}(T_b)=I_{\max,0}\Big[1-\rho_T\,(T_b-T_{\mathrm{ref}})\Big]_+,\qquad \rho_T\ge 0. \end{equation} When $I_{\mathrm{CPL}}>I_{\max}$, the device operates in a degraded regime with delivered power $P_{\mathrm{del}}(t)=V_{\mathrm{term}}(t)I(t)\le P_{\mathrm{tot}}(t)$, corresponding to throttling. \subsection{Initial Conditions and Termination Definitions (TTE and optional $t_\Delta$)}\label{sec:ic_tte} We use \begin{equation}\label{eq:ic} z(0)=z_0,\qquad v_p(0)=0,\qquad T_b(0)=T_a(0),\qquad S(0)=S_0,\qquad w(0)=0. \end{equation} We define the time-to-end (time-to-empty / time-to-shutdown) as \begin{equation}\label{eq:TTE} \mathrm{TTE}=\inf\Big\{t>0:\ V_{\mathrm{term}}(t)\le V_{\mathrm{cut}}\ \ \text{or}\ \ z(t)\le 0\Big\}. \end{equation} Optionally, to quantify CPL infeasibility as a voltage-collapse risk indicator, we define \begin{equation}\label{eq:tDelta} t_{\Delta}=\inf\Big\{t>0:\ \Delta(t)\le 0\Big\}. \end{equation} With throttling \eqref{eq:I_sat}, $t_\Delta$ is interpreted as the onset time at which pure CPL operation becomes infeasible, even if the system may continue operating in a degraded mode. \subsection{Closed-Loop Structure Summary}\label{sec:summary_loop} The model forms a closed-loop chain: \begin{equation}\label{eq:loop} \mathbf{u}(t)\ \Rightarrow\ P_{\mathrm{tot}}(t)\ \Rightarrow\ \big(V_{\mathrm{oc}}(z_{\mathrm{eff}}),R_0(T_b,S),\Delta(t)\big)\ \Rightarrow\ I(t)\ \Rightarrow\ \dot{\mathbf{x}}(t)\ \Rightarrow\ \big(V_{\mathrm{term}}(t),z(t),\mathrm{TTE}\big). \end{equation} Nonlinear feedback arises because $P_{\mathrm{tot}}$ is enforced via CPL, while $R_0$ and $Q_{\mathrm{eff}}$ depend on $(T_b,S)$, which in turn evolve under the dissipated power. \subsection{(Optional) Scaling and Time-Scale Discussion}\label{sec:scaling} Although not required for computation, a brief scale analysis clarifies stiffness and numerical choices. Let $\tau_p=R_1C_1$ denote the polarization time constant, and $\tau_{\mathrm{th}}=C_{\mathrm{th}}/(hA)$ the thermal time constant. Typically $\tau_p\ll \tau_{\mathrm{th}}$, implying fast electrical transients and slower thermal drift. Moreover, the tail dynamics introduce $\tau_\uparrow\ll \tau_\downarrow$. These separated time scales motivate a time step that resolves $\tau_p$ and $\tau_\uparrow$ in explicit integration, as enforced later in the numerical method.