# 1) 必须文档 ①:Project Memory(核心模型备忘录) > **用途**:下个对话里快速恢复我们已完成的“假设 + 模型建立 + 求解框架”。 > **你要做的**:原样粘贴到新对话开头(Prompt A 会包含它)。 ## A. Problem & Scope * Contest: **2026 MCM Problem A (continuous-time smartphone battery drain)** * Completed sections: **Assumptions + Model Formulation and Solution (Q1 core)** * Constraints: **mechanism-driven, no black-box regression**, continuous-time ODE/DAE, include numerical method + stability/convergence statements. ## B. State, Inputs, Outputs * **State**: (\mathbf{x}(t)=[z(t),v_p(t),T_b(t),S(t),w(t)]^\top) * (z): SOC, (v_p): polarization voltage, (T_b): battery temperature, (S): SOH (capacity fraction), (w): radio tail state * **Inputs**: (\mathbf{u}(t)=[L(t),C(t),N(t),\Psi(t),T_a(t)]^\top) * (L): brightness, (C): CPU load, (N): network activity, (\Psi): signal quality (higher better), (T_a): ambient temp * **Outputs**: (V_{\text{term}}(t)), SOC (z(t)), **TTE** ## C. Power mapping (component-level, explicit (\Psi) effect) [ P_{\mathrm{tot}}(t)=P_{\mathrm{bg}}+P_{\mathrm{scr}}(L)+P_{\mathrm{cpu}}(C)+P_{\mathrm{net}}(N,\Psi,w) ] [ P_{\mathrm{scr}}(L)=P_{\mathrm{scr},0}+k_L L^\gamma,;\gamma>1 ] [ P_{\mathrm{cpu}}(C)=P_{\mathrm{cpu},0}+k_C C^\eta,;\eta>1 ] [ P_{\mathrm{net}}(N,\Psi,w)=P_{\mathrm{net},0}+k_N\frac{N}{(\Psi+\varepsilon)^\kappa}+k_{\mathrm{tail}}w,;\kappa>0 ] Tail dynamics (continuous, avoids discrete FSM): [ \dot w=\frac{\sigma(N)-w}{\tau(N)},\quad \tau(N)=\begin{cases}\tau_\uparrow,&\sigma(N)\ge w\ \tau_\downarrow,&\sigma(N)0:;V_{\mathrm{term}}(t)\le V_{\mathrm{cut}}\ \text{or}\ z(t)\le0\ \text{or}\ \Delta(t)\le0} ] ## H. Numerical solution standard * Use RK4 (or ode45) with **nested algebraic solve** for (I) at each substep. * Step size: (\Delta t\le0.05,\tau_p) where (\tau_p=R_1C_1). * Convergence: step-halving until (|z_{\Delta t}-z_{\Delta t/2}|_\infty<10^{-4}); TTE change <1%. ## I. Parameter estimation (hybrid, reproducible) * OCV params ((E_0,K,A,B)): least squares to OCV–SOC curve. * (R_0): pulse instantaneous drop (\Delta V(0^+)/\Delta I). * (R_1,C_1): pulse relaxation exponential fit. * (\kappa): fit (\ln P_{\mathrm{net}}) vs (-\ln(\Psi)) at fixed throughput. ## J. References (BibTeX you already used) * Shepherd (1965), Tremblay & Dessaint (2009), Plett (2004) + smartphone energy paper as needed. --- # 2) 必须文档 ②:“不可预测机制叙事”一句话模板 > **用途**:下次写 Introduction/Modeling/Results 时保持口径一致 > Battery-life variability arises from (i) time-varying usage inputs ((L,C,N,\Psi,T_a)), (ii) nonlinear CPL closure (P=VI) that amplifies current when voltage drops, and (iii) state memory through polarization (v_p) and thermal inertia (T_b), producing history-dependent discharge trajectories. --- # 3) 必须文档 ③:你下次对话开场的 Prompt(复制即用) ## Prompt A(必用:恢复上下文 + 锁定写作风格与约束) 把下面整段复制到新对话的第一条消息: ```markdown You are my MCM/ICM continuous-modeling O-award mentor and paper lead writer. We have already completed Assumptions + full Model Formulation and Solution (Q1 core). Do NOT reinvent the model; strictly continue from the finalized framework below, keeping all symbols consistent and mechanism-driven (no black-box regression). Write in academic English (SIAM/IEEE), equations in LaTeX, and ensure solution logic matches paper narrative. ## Project Memory (do not alter) [PASTE THE ENTIRE "Project Memory" SECTION HERE] ``` > 你只需要把上面那个 `[PASTE ... HERE]` 换成我给你的 **Project Memory** 全文即可。 --- ## Prompt B(如果你下一步要做 Q2/Q3:不确定性、策略、灵敏度) ```markdown Continue with the same model. Now do: (1) uncertainty modeling for future usage inputs using a continuous-time stochastic process (e.g., OU / regime switching), (2) Monte Carlo to obtain a TTE distribution, (3) global sensitivity (Sobol or variance-based) on key parameters (k_L, gamma, k_N, kappa, T_a, etc.), and (4) produce figure descriptions that match the simulations. Keep all derivations and algorithmic steps explicit. ``` --- ## Prompt C(如果你下一步要做“Parameter Estimation”章节写作) ```markdown Write a complete "Parameter Estimation" section for the existing model: - specify which parameters come from literature/datasheets vs which are fitted; - provide objective functions and constraints for fitting (OCV curve, pulse response for R0/R1/C1, signal exponent kappa); - include identifiability discussion and practical calibration workflow. No new model components unless strictly necessary. ```