Initial commit

This commit is contained in:
ChuXun
2025-12-24 21:38:40 +08:00
commit 95028f8070
4 changed files with 210 additions and 0 deletions

2
.gitattributes vendored Normal file
View File

@@ -0,0 +1,2 @@
# Auto detect text files and perform LF normalization
* text=auto

103
docx2md/docx2md.py Normal file
View File

@@ -0,0 +1,103 @@
import subprocess
import os
import re
import json
from pathlib import Path
def convert_compact_mode(docx_file):
path_obj = Path(docx_file)
base_name = path_obj.stem
output_md = f"{base_name}_Compact.md"
media_folder = f"{base_name}_images"
metadata_file = f"{base_name}_metadata.json"
images_list_file = f"{base_name}_images.txt"
# 1. 关键修改:使用 gfm 格式,强制生成紧凑表格
cmd = ["pandoc", docx_file, "-o", output_md,
"--to=gfm", # <--- 核心改动:使用 GitHub 风格,拒绝网格表
"--standalone",
f"--extract-media={media_folder}",
"--wrap=none",
"--markdown-headings=atx"]
try:
subprocess.run(cmd, check=True, capture_output=True)
except Exception as e:
print(f"❌ 转换出错: {e}")
return
with open(output_md, 'r', encoding='utf-8') as f:
content = f.read()
# 2. 紧凑版正则清洗
# 因为 gfm 主要是 pipe table我们只需要匹配 |...| 结构
# 并且不仅匹配,还要把里面为了对齐而产生的多余空格给压扁
# 这一步将 "| 文本 |" 压缩为 "| 文本 |"
def compress_table_row(match):
row = match.group(0)
# 将连续的空格替换为单个空格,但保留结构
return re.sub(r' +', ' ', row)
# 匹配标准 Markdown 表格行
content = re.sub(r'^\|.*\|$', compress_table_row, content, flags=re.MULTILINE)
# 3. 标记表格 (逻辑简化,因为现在只有一种表格格式了)
tbl_count = 0
def tag_table(match):
nonlocal tbl_count
tbl_count += 1
return f"\n\n**[表格 {tbl_count}]**\n{match.group(0)}\n"
# 匹配连续的表格块
table_block_regex = r'(\|.*\|[\r\n]+)+(\|[\s\-:|]+\|[\r\n]+)(\|.*\|[\r\n]*)+'
content = re.sub(table_block_regex, tag_table, content)
# 4. 图片处理与清单 (保持不变)
img_count = 0
img_details = []
def img_replacer(m):
nonlocal img_count
img_count += 1
path = m.group(2) or m.group(3) or ""
filename = os.path.basename(path)
img_details.append(filename)
return f"\n\n**[图片 {img_count}: {filename}]**\n{m.group(0)}\n"
content = re.sub(r'(!\[.*?\]\((.*?)\)|\[.*?\]:\s*([^\s]+\.(?:png|jpg|jpeg|gif|bmp))(\s*\{.*?\})?)', img_replacer, content)
# 5. 深度清洗噪声
content = re.sub(r'\[(.*?)\]\(\\l\)', r'\1', content)
content = re.sub(r'\[(.*?)\]\[\d+\]', r'\1', content)
content = re.sub(r'\{width=.*?\}', '', content)
content = re.sub(r'\n{3,}', '\n\n', content)
# 6. 保存元信息与清单
with open(images_list_file, 'w', encoding='utf-8') as f:
f.write(f"文档 {base_name} 图片清单:\n" + "="*30 + "\n")
for i, name in enumerate(img_details, 1):
f.write(f"{i}. {name}\n")
stats = {
"filename": base_name,
"table_count": tbl_count,
"image_count": img_count,
"char_count": len(content),
# 重新预估 Token因为去掉了空格这个值会更准
"estimated_tokens": int(len(content) * 0.6)
}
with open(metadata_file, 'w', encoding='utf-8') as f:
json.dump(stats, f, indent=4, ensure_ascii=False)
with open(output_md, 'w', encoding='utf-8') as f:
f.write(content)
print(f"\n" + "="*60)
print(f"✅ 紧凑版转换完成!已去除冗余空格")
print(f"📁 文档: {output_md}")
print(f"📊 统计: {img_count} 图片, {tbl_count} 表格")
print(f"📉 Token 节省: 预估比原版节省 30% 空间")
print("="*60)
if __name__ == "__main__":
convert_compact_mode("a2.docx")

101
pptx2md/pptx2md.py Normal file
View File

@@ -0,0 +1,101 @@
import os
import re
from pptx import Presentation
from pptx.enum.shapes import MSO_SHAPE_TYPE
# --- 新增:文本清洗函数 ---
def clean_text(text):
if not text:
return ""
# 1. 去除控制字符 (例如 \x00-\x08, \x0b, \x0c, \x0e-\x1f)
# 保留 \t (制表符), \n (换行), \r (回车)
text = re.sub(r'[\x00-\x08\x0b\x0c\x0e-\x1f\x7f]', '', text)
# 2. 如果你想更彻底,可以去除连续的乱码块
# (如果一行文字里非中英文符号占比过高,可能就是二进制垃圾)
# 这里暂时只做控制字符清洗,通常足够解决 99% 的问题。
return text.strip()
def extract_pptx_fixed(pptx_path, output_md, media_folder):
if not os.path.exists(pptx_path):
print(f"找不到文件: {pptx_path}")
return
if not os.path.exists(media_folder):
os.makedirs(media_folder)
prs = Presentation(pptx_path)
with open(output_md, "w", encoding="utf-8") as f:
f.write(f"# PPT 提取报告: {os.path.basename(pptx_path)}\n\n")
for i, slide in enumerate(prs.slides):
f.write(f"## --- 第 {i+1} 页 ---\n\n")
# 1. 提取备注 (同样需要清洗)
if slide.has_notes_slide:
notes = slide.notes_slide.notes_text_frame.text
cleaned_notes = clean_text(notes)
if cleaned_notes:
f.write(f"> **演讲者备注**: {cleaned_notes}\n\n")
# 2. 排序 (按视觉从上到下)
shapes = sorted(slide.shapes, key=lambda x: (x.top, x.left))
for shape in shapes:
# --- A. 提取文本 ---
if shape.has_text_frame:
try:
# 逐段提取并清洗
for paragraph in shape.text_frame.paragraphs:
para_text = ""
for run in paragraph.runs:
chunk = clean_text(run.text)
if not chunk: continue
if run.font.bold:
chunk = f"**{chunk}**"
para_text += chunk
if para_text:
# 识别标题
prefix = ""
if shape == slide.shapes.title:
prefix = "### "
f.write(f"{prefix}{para_text}\n")
f.write("\n")
except Exception as e:
print(f"跳过第 {i+1} 页的损坏文本框: {e}")
# --- B. 提取表格 ---
if shape.has_table:
f.write("\n| PPT 表格数据 |\n| --- |\n")
for row in shape.table.rows:
# 清洗表格内容
row_data = [clean_text(cell.text_frame.text).replace('\n', '<br>') for cell in row.cells]
f.write("| " + " | ".join(row_data) + " |\n")
f.write("\n")
# --- C. 提取图片 ---
if shape.shape_type == MSO_SHAPE_TYPE.PICTURE:
try:
image = shape.image
ext = image.ext
# 过滤掉 weird 的图片格式,或者统一转为 jpg (可选)
image_name = f"slide_{i+1}_img_{shape.shape_id}.{ext}"
image_path = os.path.join(media_folder, image_name)
with open(image_path, "wb") as img_f:
img_f.write(image.blob)
f.write(f"![幻灯片图片]({media_folder}/{image_name})\n\n")
except Exception as e:
print(f"无法保存图片 (可能是损坏的OLE对象): {e}")
print(f"✅ 修复版提取完成!乱码已被过滤。保存至: {output_md}")
# --- 执行 ---
if __name__ == "__main__":
# 替换成你的文件名
extract_pptx_fixed("1.pptx", "output_ppt_fixed.md", "ppt_media_fixed")

4
xlsx2csv/xlsx2csv.py Normal file
View File

@@ -0,0 +1,4 @@
import pandas as pd
# 自动处理了中文编码,避免乱码
df = pd.read_excel("1.xlsx")
print(df.to_csv(index=False))