Files
MCM/A题/分析/框架1/memory.md
2026-01-30 17:33:29 +08:00

170 lines
6.1 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
# 1) 必须文档 ①Project Memory核心模型备忘录
> **用途**:下个对话里快速恢复我们已完成的“假设 + 模型建立 + 求解框架”。
> **你要做的**原样粘贴到新对话开头Prompt A 会包含它)。
## A. Problem & Scope
* Contest: **2026 MCM Problem A (continuous-time smartphone battery drain)**
* Completed sections: **Assumptions + Model Formulation and Solution (Q1 core)**
* Constraints: **mechanism-driven, no black-box regression**, continuous-time ODE/DAE, include numerical method + stability/convergence statements.
## B. State, Inputs, Outputs
* **State**: (\mathbf{x}(t)=[z(t),v_p(t),T_b(t),S(t),w(t)]^\top)
* (z): SOC, (v_p): polarization voltage, (T_b): battery temperature, (S): SOH (capacity fraction), (w): radio tail state
* **Inputs**: (\mathbf{u}(t)=[L(t),C(t),N(t),\Psi(t),T_a(t)]^\top)
* (L): brightness, (C): CPU load, (N): network activity, (\Psi): signal quality (higher better), (T_a): ambient temp
* **Outputs**: (V_{\text{term}}(t)), SOC (z(t)), **TTE**
## C. Power mapping (component-level, explicit (\Psi) effect)
[
P_{\mathrm{tot}}(t)=P_{\mathrm{bg}}+P_{\mathrm{scr}}(L)+P_{\mathrm{cpu}}(C)+P_{\mathrm{net}}(N,\Psi,w)
]
[
P_{\mathrm{scr}}(L)=P_{\mathrm{scr},0}+k_L L^\gamma,;\gamma>1
]
[
P_{\mathrm{cpu}}(C)=P_{\mathrm{cpu},0}+k_C C^\eta,;\eta>1
]
[
P_{\mathrm{net}}(N,\Psi,w)=P_{\mathrm{net},0}+k_N\frac{N}{(\Psi+\varepsilon)^\kappa}+k_{\mathrm{tail}}w,;\kappa>0
]
Tail dynamics (continuous, avoids discrete FSM):
[
\dot w=\frac{\sigma(N)-w}{\tau(N)},\quad
\tau(N)=\begin{cases}\tau_\uparrow,&\sigma(N)\ge w\ \tau_\downarrow,&\sigma(N)<w\end{cases},;
\tau_\uparrow\ll\tau_\downarrow,;
\sigma(N)=\min(1,N)
]
## D. ECM + CPL current closure (nonlinear feedback source)
Terminal voltage:
[
V_{\mathrm{term}}=V_{\mathrm{oc}}(z)-v_p-I R_0(T_b,S)
]
CPL constraint:
[
P_{\mathrm{tot}}=V_{\mathrm{term}}I=\big(V_{\mathrm{oc}}-v_p-IR_0\big)I
]
Quadratic current:
[
I=\frac{V_{\mathrm{oc}}-v_p-\sqrt{\Delta}}{2R_0},\quad
\Delta=(V_{\mathrm{oc}}-v_p)^2-4R_0P_{\mathrm{tot}}
]
Shutdown/feasibility:
* Require (\Delta\ge0); if (\Delta\le0) ⇒ power infeasible ⇒ voltage collapse/shutdown.
## E. Coupled ODEs (SOCpolarizationthermalSOH)
[
\dot z=-\frac{I}{3600,Q_{\mathrm{eff}}(T_b,S)}
]
[
\dot v_p=\frac{I}{C_1}-\frac{v_p}{R_1C_1}
]
[
\dot T_b=\frac{1}{C_{\mathrm{th}}}\Big(I^2R_0+Iv_p-hA(T_b-T_a)\Big)
]
SOH (Option A compact, used for Q1):
[
\dot S=-\lambda_{\mathrm{sei}}|I|^{m}\exp!\left(-\frac{E_{\mathrm{sei}}}{R_gT_b}\right),;0\le m\le1
]
(Option B SEI thickness (\delta) exists as upgrade path if needed.)
## F. Constitutive relations
Modified Shepherd OCV:
[
V_{\mathrm{oc}}(z)=E_0-K\Big(\frac{1}{z}-1\Big)+A e^{-B(1-z)}
]
Arrhenius resistance + SOH correction:
[
R_0(T_b,S)=R_{\mathrm{ref}}\exp!\Big[\frac{E_a}{R_g}\Big(\frac{1}{T_b}-\frac{1}{T_{\mathrm{ref}}}\Big)\Big],(1+\eta_R(1-S))
]
Effective capacity:
[
Q_{\mathrm{eff}}(T_b,S)=Q_{\mathrm{nom}}S\Big[1-\alpha_Q(T_{\mathrm{ref}}-T_b)\Big]_+
]
## G. Initial conditions & TTE
[
z(0)=z_0,;v_p(0)=0,;T_b(0)=T_a(0),;S(0)=S_0,;w(0)=0
]
[
\mathrm{TTE}=\inf{t>0:;V_{\mathrm{term}}(t)\le V_{\mathrm{cut}}\ \text{or}\ z(t)\le0\ \text{or}\ \Delta(t)\le0}
]
## H. Numerical solution standard
* Use RK4 (or ode45) with **nested algebraic solve** for (I) at each substep.
* Step size: (\Delta t\le0.05,\tau_p) where (\tau_p=R_1C_1).
* Convergence: step-halving until (|z_{\Delta t}-z_{\Delta t/2}|_\infty<10^{-4}); TTE change <1%.
## I. Parameter estimation (hybrid, reproducible)
* OCV params ((E_0,K,A,B)): least squares to OCVSOC curve.
* (R_0): pulse instantaneous drop (\Delta V(0^+)/\Delta I).
* (R_1,C_1): pulse relaxation exponential fit.
* (\kappa): fit (\ln P_{\mathrm{net}}) vs (-\ln(\Psi)) at fixed throughput.
## J. References (BibTeX you already used)
* Shepherd (1965), Tremblay & Dessaint (2009), Plett (2004) + smartphone energy paper as needed.
---
# 2) 必须文档 ②:“不可预测机制叙事”一句话模板
> **用途**:下次写 Introduction/Modeling/Results 时保持口径一致
> Battery-life variability arises from (i) time-varying usage inputs ((L,C,N,\Psi,T_a)), (ii) nonlinear CPL closure (P=VI) that amplifies current when voltage drops, and (iii) state memory through polarization (v_p) and thermal inertia (T_b), producing history-dependent discharge trajectories.
---
# 3) 必须文档 ③:你下次对话开场的 Prompt复制即用
## Prompt A必用恢复上下文 + 锁定写作风格与约束)
把下面整段复制到新对话的第一条消息:
```markdown
You are my MCM/ICM continuous-modeling O-award mentor and paper lead writer.
We have already completed Assumptions + full Model Formulation and Solution (Q1 core).
Do NOT reinvent the model; strictly continue from the finalized framework below, keeping all symbols consistent and mechanism-driven (no black-box regression).
Write in academic English (SIAM/IEEE), equations in LaTeX, and ensure solution logic matches paper narrative.
## Project Memory (do not alter)
[PASTE THE ENTIRE "Project Memory" SECTION HERE]
```
> 你只需要把上面那个 `[PASTE ... HERE]` 换成我给你的 **Project Memory** 全文即可。
---
## Prompt B如果你下一步要做 Q2/Q3不确定性、策略、灵敏度
```markdown
Continue with the same model. Now do: (1) uncertainty modeling for future usage inputs using a continuous-time stochastic process (e.g., OU / regime switching), (2) Monte Carlo to obtain a TTE distribution, (3) global sensitivity (Sobol or variance-based) on key parameters (k_L, gamma, k_N, kappa, T_a, etc.), and (4) produce figure descriptions that match the simulations. Keep all derivations and algorithmic steps explicit.
```
---
## Prompt C如果你下一步要做“Parameter Estimation”章节写作
```markdown
Write a complete "Parameter Estimation" section for the existing model:
- specify which parameters come from literature/datasheets vs which are fitted;
- provide objective functions and constraints for fitting (OCV curve, pulse response for R0/R1/C1, signal exponent kappa);
- include identifiability discussion and practical calibration workflow.
No new model components unless strictly necessary.
```