Files
MCM/A题/分析/框架1/模型3.md
2026-01-30 17:33:29 +08:00

417 lines
14 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
## Model Formulation and Solution
### 1. Mechanistic Narrative for “Unpredictable” Battery Life
Battery-life “unpredictability” is not treated as randomness by fiat; it emerges from a **closed-loop nonlinear dynamical system** driven by time-varying user behavior. Three mechanisms dominate:
1. **Uncertain, time-varying inputs**: screen brightness (L(t)), processor load (C(t)), network activity (N(t)), signal quality (\Psi(t)), and ambient temperature (T_a(t)) fluctuate continuously, inducing a fluctuating power request (P_{\mathrm{tot}}(t)).
2. **Constant-power-load (CPL) nonlinearity**: smartphones behave approximately as CPLs at short time scales; thus the discharge current (I(t)) is not prescribed but must satisfy (P_{\mathrm{tot}}(t)=V_{\mathrm{term}}(t)I(t)). As the terminal voltage declines (low SOC, cold temperature, polarization), the required current increases disproportionately, accelerating depletion.
3. **State memory**: polarization (v_p(t)) and temperature (T_b(t)) store information about the recent past; therefore, identical “current usage” can drain differently depending on what happened minutes earlier (gaming burst, radio tail, or cold exposure).
This narrative is included explicitly so that every equation below has a clear physical role in the causal chain
[
(L,C,N,\Psi,T_a)\ \Rightarrow\ P_{\mathrm{tot}}\ \Rightarrow\ I\ \Rightarrow\ (z,v_p,T_b,S)\ \Rightarrow\ V_{\mathrm{term}},\ \mathrm{TTE}.
]
---
### 2. State Variables, Inputs, and Outputs
#### 2.1 State vector
We model the batteryphone system as a continuous-time state-space system with
[
\mathbf{x}(t)=\big[z(t),,v_p(t),,T_b(t),,S(t),,w(t)\big]^\top,
]
where
* (z(t)\in[0,1]): state of charge (SOC).
* (v_p(t)) (V): polarization voltage (electrochemical transient “memory”).
* (T_b(t)) (K): battery temperature.
* (S(t)\in(0,1]): state of health (SOH), interpreted as retained capacity fraction.
* (w(t)\in[0,1]): radio “tail” activation level (continuous surrogate of network high-power persistence).
#### 2.2 Inputs (usage profile)
[
\mathbf{u}(t)=\big[L(t),,C(t),,N(t),,\Psi(t),,T_a(t)\big]^\top,
]
where (L,C,N\in[0,1]), signal quality (\Psi(t)\in(0,1]) (larger means better), and (T_a(t)) is ambient temperature.
#### 2.3 Outputs
* Terminal voltage (V_{\mathrm{term}}(t))
* SOC (z(t))
* Time-to-empty (\mathrm{TTE}) defined via a voltage cutoff and feasibility conditions (Section 6)
---
### 3. Equivalent Circuit and Core ElectroThermalAging Dynamics
#### 3.1 Terminal voltage: 1st-order Thevenin ECM
We use a first-order Thevenin equivalent circuit with one polarization branch:
[
V_{\mathrm{term}}(t)=V_{\mathrm{oc}}\big(z(t)\big)-v_p(t)-I(t),R_0\big(T_b(t),S(t)\big).
]
This model is a practical compromise: it captures nonlinear voltage behavior and transient polarization while remaining identifiable and computationally efficient.
#### 3.2 SOC dynamics (charge conservation)
Let (Q_{\mathrm{eff}}(T_b,S)) be the effective deliverable capacity (Ah). Then
[
\boxed{
\frac{dz}{dt}=-\frac{I(t)}{3600,Q_{\mathrm{eff}}\big(T_b(t),S(t)\big)}.
}
]
The factor (3600) converts Ah to Coulombs.
#### 3.3 Polarization dynamics (RC memory)
[
\boxed{
\frac{dv_p}{dt}=\frac{I(t)}{C_1}-\frac{v_p(t)}{R_1C_1}.
}
]
The time constant (\tau_p=R_1C_1) governs relaxation after workload changes.
#### 3.4 Thermal dynamics (lumped energy balance)
[
\boxed{
\frac{dT_b}{dt}=\frac{1}{C_{\mathrm{th}}}\Big(I(t)^2R_0(T_b,S)+I(t),v_p(t)-hA\big(T_b(t)-T_a(t)\big)\Big).
}
]
* (I^2R_0): ohmic heating
* (Iv_p): polarization heat
* (hA(T_b-T_a)): convective cooling
* (C_{\mathrm{th}}): effective thermal capacitance
#### 3.5 SOH dynamics: explicit long-horizon mechanism (SEI-inspired)
Even though (\Delta S) is small during a single discharge, writing a dynamical SOH equation signals mechanistic completeness and enables multi-cycle forecasting.
**Option A (compact throughput + Arrhenius):**
[
\boxed{
\frac{dS}{dt}=-\lambda_{\mathrm{sei}},|I(t)|^{m}\exp!\left(-\frac{E_{\mathrm{sei}}}{R_gT_b(t)}\right),
\qquad 0\le m\le 1.
}
]
**Option B (explicit SEI thickness state, diffusion-limited growth):**
Introduce SEI thickness (\delta(t)) and define
[
\frac{d\delta}{dt}
==================
k_{\delta},|I(t)|^{m}\exp!\left(-\frac{E_{\delta}}{R_gT_b}\right)\frac{1}{\delta+\delta_0},
\qquad
\frac{dS}{dt}=-\eta_{\delta},\frac{d\delta}{dt}.
]
For Question 1 (single discharge), Option A is typically sufficient and numerically lighter; Option B is presented as an upgrade path for multi-cycle study.
---
### 4. Multiphysics Power Mapping: (L,C,N,\Psi\rightarrow P_{\mathrm{tot}}(t))
Smartphones can be modeled as a sum of component power demands. We define
[
P_{\mathrm{tot}}(t)=P_{\mathrm{bg}}+P_{\mathrm{scr}}\big(L(t)\big)+P_{\mathrm{cpu}}\big(C(t)\big)+P_{\mathrm{net}}\big(N(t),\Psi(t),w(t)\big).
]
#### 4.1 Screen power
A smooth brightness response is captured by
[
\boxed{
P_{\mathrm{scr}}(L)=P_{\mathrm{scr},0}+k_L,L^{\gamma},\qquad \gamma>1.
}
]
This form conveniently supports OLED/LCD scenario analysis: OLED-like behavior tends to have stronger convexity (larger effective (\gamma)).
#### 4.2 CPU power (DVFS-consistent convexity)
A minimal DVFS-consistent convex map is
[
\boxed{
P_{\mathrm{cpu}}(C)=P_{\mathrm{cpu},0}+k_C,C^{\eta},\qquad \eta>1,
}
]
reflecting that CPU power often grows faster than linearly with load due to frequency/voltage scaling.
#### 4.3 Network power with signal-quality penalty and radio tail
We encode weak-signal amplification via a power law and include a continuous tail state:
[
\boxed{
P_{\mathrm{net}}(N,\Psi,w)=P_{\mathrm{net},0}+k_N,\frac{N}{(\Psi+\varepsilon)^{\kappa}}+k_{\mathrm{tail}},w,
\qquad \kappa>0.
}
]
**Tail-state dynamics (continuous surrogate of radio persistence):**
[
\boxed{
\frac{dw}{dt}=\frac{\sigma(N(t))-w(t)}{\tau(N(t))},
\qquad
\tau(N)=
\begin{cases}
\tau_{\uparrow}, & \sigma(N)\ge w,\
\tau_{\downarrow}, & \sigma(N)< w,
\end{cases}
}
]
with (\tau_{\uparrow}\ll\tau_{\downarrow}) capturing fast activation and slow decay; (\sigma(\cdot)) may be (\sigma(N)=\min{1,N}). This introduces memory without discrete state machines, keeping the overall model continuous-time.
---
### 5. Current Closure Under Constant-Power Load (CPL)
#### 5.1 Algebraic closure
We impose the CPL constraint
[
\boxed{
P_{\mathrm{tot}}(t)=V_{\mathrm{term}}(t),I(t).
}
]
Substituting (V_{\mathrm{term}}=V_{\mathrm{oc}}-v_p-I R_0) yields
[
R_0 I^2-\big(V_{\mathrm{oc}}(z)-v_p\big)I+P_{\mathrm{tot}}=0.
]
#### 5.2 Physically admissible current (quadratic root)
[
\boxed{
I(t)=\frac{V_{\mathrm{oc}}(z)-v_p-\sqrt{\Delta(t)}}{2R_0(T_b,S)},
\quad
\Delta(t)=\big(V_{\mathrm{oc}}(z)-v_p\big)^2-4R_0(T_b,S),P_{\mathrm{tot}}(t).
}
]
We take the smaller root to maintain (V_{\mathrm{term}}\ge 0) and avoid unphysical large currents.
#### 5.3 Feasibility / collapse condition
[
\Delta(t)\ge 0
]
is required for real (I(t)). If (\Delta(t)\le 0), the requested power exceeds deliverable power at that state; the phone effectively shuts down (voltage collapse), which provides a mechanistic explanation for “sudden drops” under cold/low SOC/weak signal.
---
### 6. Constitutive Relations: (V_{\mathrm{oc}}(z)), (R_0(T_b,S)), (Q_{\mathrm{eff}}(T_b,S))
#### 6.1 Open-circuit voltage: modified Shepherd form
[
\boxed{
V_{\mathrm{oc}}(z)=E_0-K\left(\frac{1}{z}-1\right)+A,e^{-B(1-z)}.
}
]
This captures the plateau and the end-of-discharge knee smoothly.
#### 6.2 Internal resistance: Arrhenius temperature dependence + SOH correction
[
\boxed{
R_0(T_b,S)=R_{\mathrm{ref}}
\exp!\left[\frac{E_a}{R_g}\left(\frac{1}{T_b}-\frac{1}{T_{\mathrm{ref}}}\right)\right]\Big(1+\eta_R(1-S)\Big).
}
]
Cold increases (R_0); aging (lower (S)) increases resistance.
#### 6.3 Effective capacity: temperature + aging
[
\boxed{
Q_{\mathrm{eff}}(T_b,S)=Q_{\mathrm{nom}},S\Big[1-\alpha_Q,(T_{\mathrm{ref}}-T_b)\Big]*+,
}
]
where ([\cdot]*+=\max(\cdot,\kappa_{\min})) prevents nonphysical negative capacity.
---
### 7. Final Closed System (ODE + algebraic current)
Collecting Sections 36, the model is a nonlinear ODE system driven by (\mathbf{u}(t)), with a nested algebraic solver for (I(t)):
[
\dot{\mathbf{x}}(t)=\mathbf{f}\big(t,\mathbf{x}(t),\mathbf{u}(t)\big),
\quad
I(t)=\mathcal{I}\big(\mathbf{x}(t),\mathbf{u}(t)\big)
]
where (\mathcal{I}) is the quadratic-root mapping.
**Initial conditions (must be stated explicitly):**
[
z(0)=z_0,\quad v_p(0)=0,\quad T_b(0)=T_a(0),\quad S(0)=S_0,\quad w(0)=0.
]
---
### 8. Parameter Estimation (Hybrid: literature + identifiable fits)
A fully free fit is ill-posed; we use a **hybrid identification** strategy:
#### 8.1 Literature / specification parameters
* (Q_{\mathrm{nom}}), nominal voltage class, plausible cutoff (V_{\mathrm{cut}})
* thermal scales (C_{\mathrm{th}},hA) in reasonable ranges for compact devices
* activation energies (E_a,E_{\mathrm{sei}}) as literature-consistent order-of-magnitude
#### 8.2 OCV curve fit: ((E_0,K,A,B))
From quasi-equilibrium OCVSOC samples ({(z_i,V_i)}):
[
\min_{E_0,K,A,B}\sum_i\left[V_i - V_{\mathrm{oc}}(z_i)\right]^2,
\quad E_0,K,A,B>0.
]
#### 8.3 Pulse identification: (R_0,R_1,C_1)
Apply a current pulse (\Delta I). The instantaneous voltage drop estimates
[
R_0\approx \frac{\Delta V(0^+)}{\Delta I}.
]
The relaxation yields (\tau_p=R_1C_1) from exponential decay; (R_1) from amplitude and (C_1=\tau_p/R_1).
#### 8.4 Signal exponent (\kappa) (or exponential alternative)
From controlled network tests at fixed throughput (N) with varying (\Psi), fit:
[
\ln\big(P_{\mathrm{net}}-P_{\mathrm{net},0}-k_{\mathrm{tail}}w\big)
===================================================================
\ln(k_NN)-\kappa \ln(\Psi+\varepsilon).
]
---
### 9. Scenario Simulation (Synthetic yet physics-plausible)
We choose a representative smartphone battery:
* (Q_{\mathrm{nom}}=4000,\mathrm{mAh}=4,\mathrm{Ah})
* nominal voltage (\approx 3.7,\mathrm{V})
#### 9.1 A realistic alternating-load usage profile
Define a 6-hour profile with alternating low/high intensity segments. A smooth transition operator avoids discontinuities:
[
\mathrm{win}(t;a,b,\delta)=\frac{1}{1+e^{-(t-a)/\delta}}-\frac{1}{1+e^{-(t-b)/\delta}}.
]
Then
[
L(t)=\sum_j L_j,\mathrm{win}(t;a_j,b_j,\delta),\quad
C(t)=\sum_j C_j,\mathrm{win}(t;a_j,b_j,\delta),\quad
N(t)=\sum_j N_j,\mathrm{win}(t;a_j,b_j,\delta),
]
with (\delta\approx 20) s.
Example segment levels (normalized):
* standby/messaging: (L=0.10, C=0.10, N=0.20)
* streaming: (L=0.70, C=0.40, N=0.60)
* gaming: (L=0.90, C=0.90, N=0.50)
* navigation: (L=0.80, C=0.60, N=0.80)
Signal quality (\Psi(t)) can be set to “good” for most intervals, with one “poor-signal” hour to test the (\Psi^{-\kappa}) mechanism.
---
### 10. Numerical Solution
#### 10.1 RK4 with nested algebraic current solve
We integrate the ODEs using classical RK4. At each substage, we recompute:
[
P_{\mathrm{tot}}\rightarrow V_{\mathrm{oc}}\rightarrow R_0,Q_{\mathrm{eff}}\rightarrow \Delta \rightarrow I
]
and then evaluate (\dot{\mathbf{x}}).
**Algorithm 1 (RK4 + CPL closure)**
1. Given (\mathbf{x}_n) at time (t_n), compute inputs (\mathbf{u}(t_n)).
2. Compute (P_{\mathrm{tot}}(t_n)) and solve (I(t_n)) from the quadratic root.
3. Evaluate RK4 stages (\mathbf{k}_1,\dots,\mathbf{k}_4), solving (I) inside each stage.
4. Update (\mathbf{x}_{n+1}).
5. Stop if (V_{\mathrm{term}}\le V_{\mathrm{cut}}) or (z\le 0) or (\Delta\le 0).
#### 10.2 Step size, stability, and convergence criterion
Let (\tau_p=R_1C_1). Choose
[
\Delta t \le 0.05,\tau_p
]
to resolve polarization. Perform step-halving verification:
[
|z_{\Delta t}-z_{\Delta t/2}|_\infty < \varepsilon_z,\quad \varepsilon_z=10^{-4}.
]
Report that predicted TTE changes by less than a chosen tolerance (e.g., 1%) when halving (\Delta t).
---
### 11. Result Presentation (what to report in the paper)
#### 11.1 Primary plots
* (z(t)) (SOC curve), with shaded regions indicating usage segments
* (I(t)) and (P_{\mathrm{tot}}(t)) (secondary axis)
* (T_b(t)) to show thermal feedback
* Optional: (\Delta(t)) to visualize proximity to voltage collapse under weak signal/cold
#### 11.2 Key scalar outputs
* (\mathrm{TTE}) under baseline (T_a=25^\circ\mathrm{C})
* (\mathrm{TTE}) under cold (T_a=0^\circ\mathrm{C}) and hot (T_a=40^\circ\mathrm{C})
* Sensitivity of TTE to (\Psi) (good vs poor signal), holding (N) fixed
---
### 12. Discussion: sanity checks tied to physics
* **Energy check**: a (4,\mathrm{Ah}), (3.7,\mathrm{V}) battery stores (\approx 14.8,\mathrm{Wh}); if average (P_{\mathrm{tot}}) is (2.5,\mathrm{W}), a (5\text{}7) hour TTE is plausible.
* **Cold penalty**: (R_0\uparrow) and (Q_{\mathrm{eff}}\downarrow) shorten TTE.
* **Weak signal penalty**: when (N) is significant, (\Psi^{-\kappa}) materially increases (P_{\mathrm{tot}}), pushing (\Delta) toward zero and shortening TTE.
* **Memory effects**: bursts elevate (v_p) and (w), causing post-burst drain that would not appear in static models.
---
## References (BibTeX)
```bibtex
@article{Shepherd1965,
title = {Design of Primary and Secondary Cells. Part 2. An Equation Describing Battery Discharge},
author = {Shepherd, C. M.},
journal = {Journal of The Electrochemical Society},
year = {1965},
volume = {112},
number = {7},
pages = {657--664}
}
@article{TremblayDessaint2009,
title = {Experimental Validation of a Battery Dynamic Model for EV Applications},
author = {Tremblay, Olivier and Dessaint, Louis-A.},
journal = {World Electric Vehicle Journal},
year = {2009},
volume = {3},
number = {2},
pages = {289--298}
}
@article{Plett2004,
title = {Extended Kalman Filtering for Battery Management Systems of LiPB-Based HEV Battery Packs: Part 1. Background},
author = {Plett, Gregory L.},
journal = {Journal of Power Sources},
year = {2004},
volume = {134},
number = {2},
pages = {252--261}
}
```